Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 12(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36496751

ABSTRACT

The lake sturgeon (Acipenser fulvescens; LST) is the only native sturgeon species in the Great Lakes (GL), but due to multiple factors, their current populations are estimated to be <1% of historical abundances. Little is known about infectious diseases affecting GL-LST in hatchery and wild settings. Therefore, a two-year disease surveillance study was undertaken, resulting in the detection and first in vitro isolation of a herpesvirus from grossly apparent cutaneous lesions in wild adult LST inhabiting two GL watersheds (Erie and Huron). Histological and ultrastructural examination of lesions revealed proliferative epidermitis associated with herpesvirus-like virions. A virus with identical ultrastructural characteristics was recovered from cells inoculated with lesion tissues. Partial DNA polymerase gene sequencing placed the virus within the Family Alloherpesviridae, with high similarity to a lake sturgeon herpesvirus (LSHV) from Wisconsin, USA. Genomic comparisons revealed ~84% Average Nucleotide Identity between the two isolates, leading to the proposed classification of LSHV-1 (Wisconsin) and LSHV-2 (Michigan) for the two viruses. When naïve juvenile LST were immersion-exposed to LSHV-2, severe disease and ~33% mortality occurred, with virus re-isolated from representative skin lesions, fulfilling Rivers' postulates. Results collectively show LSHV-2 is associated with epithelial changes in wild adult LST, disease and mortality in juvenile LST, and is a potential threat to GL-LST conservation.

2.
Pathogens ; 10(6)2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34207532

ABSTRACT

Epizootic epitheliotropic disease virus (EEDV) has caused considerable mortality in hatchery-reared lake trout Salvelinus namaycush in the Great Lakes Basin, and yet the routes of transmission and efficacious means of prevention remain poorly understood. To determine whether EEDV can be transmitted via contaminated fomites and clarify whether such transmission could be prevented via fomite disinfection, juvenile lake trout (n = 20 per treatment) were handled in nets previously soaked in an EEDV suspension (7.29 × 104-2.25 × 105 virus copies/mL of water) that were further immersed in either 1% Virkon® Aquatic ("disinfected" treatment, in triplicate) or in sample diluent ("EEDV-contaminated" treatment). Negative control nets were soaked in sterile sample diluent only. Characteristic gross signs of EED developed in the "EEDV-contaminated" treatment group, which was followed by 80% mortality, whereas no gross signs of disease and 0-5% mortality occurred in the negative control and "disinfected" treatment groups, respectively. EEDV was detected via qPCR in 90% of the "EEDV-contaminated" treatment fish, however, it was not detected in any fish within the negative control or "disinfected" treatment groups. Study findings not only demonstrate that EEDV can be readily transmitted via contaminated fomites, but importantly suggest that Virkon® Aquatic is an efficacious option for preventing EEDV contagion via the disinfection of hatchery tools, thereby highlighting a promising tool for improving lake trout hatchery biosecurity and minimizing EEDV-linked losses.

3.
Viruses ; 11(7)2019 06 26.
Article in English | MEDLINE | ID: mdl-31247927

ABSTRACT

Salmonid Herpesvirus-3, commonly known as the Epizootic Epitheliotropic Disease virus (EEDV), causes a disease of lake trout (Salvelinus namaycush) that has killed millions of fish over the past several decades. Currently, most aspects of EEDV disease ecology remain unknown. In this study, we investigated EEDV shedding in experimentally challenged (intracoelomic injection) lake trout that were individually microchipped. In order to assess viral shedding, each infected fish was placed in individual static, aerated aquaria for a period of 8 h, after which the water was assessed for the presence of EEDV DNA using quantitative PCR. Water sampling was conducted every seven days for 93 days post-infection (pi), followed by additional sampling after one year. Results demonstrated that lake trout began shedding EEDV into the water as early as 9 days pi. Shedding peaked approximately three weeks pi and ceased after nine weeks pi. In contrast, mortalities did not occur until 40 days pi. Although mortality reached 73.9%, surviving fish ceased shedding and continued to grow. However, additional shedding was detected 58 weeks after infection in 66% of surviving fish. Findings of this study demonstrate that EEDV is shed into the water by infected lake trout hosts for extended periods of time, a mechanism that favors virus dissemination.


Subject(s)
Fish Diseases/virology , Trout/virology , Virus Diseases/veterinary , Virus Shedding , Viruses/isolation & purification , Animals , Virus Diseases/virology , Virus Physiological Phenomena , Viruses/classification , Viruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...