Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(9): 7844-7854, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38376373

ABSTRACT

A unique nanomaterial has been developed for sweat analysis, including glucose level monitoring. Simple resusable low-cost sensors from composite materials based on graphene, hexagonal boron nitride, and conductive PEDOT:PSS (poly(3,4-ethylenedioxythiophene)polystyrene sulfonate) polymer have been developed and fabricated via 2D printing on flexible substrates. The sensors were tested as biosensors using different water-based solutions. A strong increase in the current response (several orders of magnitude) was observed for aqua vapors or glucose solution vapors. This property is associated with the sorption capacity of graphene synthesized in a volume of plasma jets and thus having many active centers on the surface. The structure and properties of graphene synthesized in a plasma are different from those of graphene created by other methods. As a result, the current response for a wearable sensor is 3-5 orders of magnitude higher for the reference blood glucose concentration range of 4-14 mM. It has been found that the most promising sensor with the highest response was fabricated based on the graphene:PEDOT:PSS composite. The graphene:h-BN:PEDOT:PSS (h-BN is hexagonal boron nitride) sensors demonstrated a longer response and the highest response after the functionalization of the sensors with a glucose oxidase enzyme. The reusable wearable graphene:PEDOT:PSS glucose sensors on a paper substrate demonstrated a current response of 10-10 to 10-5 A for an operating voltage of 0.5 V and glucose range of 4-10 mM.

2.
Phys Chem Chem Phys ; 26(6): 5489-5498, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38282480

ABSTRACT

Prospective composites, based on graphene (G) and hexagonal boron nitride (h-BN) nanoparticles, synthesized using a plasma jet and conducting polymer PEDOT:PSS, were used to create and study a set of sensors in the current study. The composites used were G:PEDOT:PSS (GPP) and G:h-BN:PEDOT:PSS (GBNPP). The PEDOT:PSS content in the composites was 10-3 wt%, and the ratio of G : h-BN was 1 : 1 in GBNPP. The development of these new highly conductive graphene-based composites makes it possible to create an active sensor layer with an ultra-low thickness of several nanometers. The ultra-high sensitivity of the current response, S, was ((2.0-3.3) × 106)% for GPP and GBNPP (2-3 printing layers) for a humidity range of 20-80%. The sensor response in the form of current pulses associated with human breathing has a range of ∼2-3 orders of magnitude. Two different processes are assumed to determine the form of the current pulse: the first is a fast process with a rise time of less than 1-4 seconds; the second is a relatively slow process with a front time of several tens of seconds. When touching with a finger (useful, for instance, for a flexible touchpad), a current response was observed as pulses of ∼2-3 orders of magnitude. We hypothesize that skin sweat is likely to play a critical role in the sensory response. Thus, this work presents an effective approach to creating a highly sensitive humidity sensor based on composite 2D materials. Moreover, the ultra-high sensitivity of the studied sensors is accompanied by their low cost and ease of manufacturing by 2D-printing.

3.
Phys Chem Chem Phys ; 24(46): 28232-28241, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36382495

ABSTRACT

During the pyrolysis of hydrocarbons in helium plasma jets in a plasma-chemical reactor, graphene flakes of a different structure and resistance were obtained. The presence of hydrogen in these structures was established by physicochemical methods, and its content depends on the pressure in the plasma-chemical reactor and the composition of a plasma-forming system. In addition to hydrogen, a relatively low concentration of oxygen atoms is present in the graphene flakes. Hydrogen is involved in the graphene nucleation, whereas oxygen is absorbed on graphene flakes from the air at low temperatures. It was found that a pressure increase in the reactor (up to 710 Torr) leads to the formation of flakes with a low resistivity (0.12-0.20 kOhm sq-1) and low defect density. In the case of synthesis at a low pressure (350-500 Torr), the resistance of graphene flakes is increased by three orders of magnitude (100-400 kOhm sq-1) with a more complicated defect structure and built-in hydrogen. Moreover, hydrogen is difficult to remove from these flakes, and annealing at relatively high temperatures (up to 300 °C) leads to a weak decrease in the resistance due to flake deformation. Additionally, the functionalization of the graphene flakes synthesized at a low pressure with fluorine atoms is suppressed due to their structural features. In general, the selection of growth parameters (gas pressure in a camera, flow rate and content of impurity atoms) allows one to control the defects in graphene, and its structure and conductivity.

4.
Nanomaterials (Basel) ; 12(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35630925

ABSTRACT

The structure and electric properties of hexagonal boron nitride (h-BN):graphene composite with additives of the conductive polymer PEDOT:PSS and ethylene glycol were examined. The graphene and h-BN flakes synthesized in plasma with nanometer sizes were used for experiments. It was found that the addition of more than 10-3 mass% of PEDOT:PSS to the graphene suspension or h-BN:graphene composite in combination with ethylene glycol leads to a strong decrease (4-5 orders of magnitude, in our case) in the resistance of the films created from these suspensions. This is caused by an increase in the conductivity of PEDOT:PSS due to the interaction with ethylene glycol and synergetic effect on the composite properties of h-BN:graphene films. The addition of PEDOT:PSS to the h-BN:graphene composite leads to the correction of the bonds between nanoparticles and a weak change in the resistance under the tensile strain caused by the sample bending. A more pronounced flexibility of the composite films with tree components is demonstrated. The self-organization effects for graphene flakes and polar h-BN flakes lead to the formation of micrometer sized plates in drops and uniform-in-size nanoparticles in inks. The ratio of the components in the composite was found for the observed strong hysteresis and a negative differential resistance. Generally, PEDOT:PSS and ethylene glycol composite films are promising for their application as electrodes or active elements for logic and signal processing.

5.
Nanomaterials (Basel) ; 10(10)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081370

ABSTRACT

The possibility of graphene synthesis (the bottom-up approach) in plasma and the effective control of the morphology and electrical properties of graphene-based layers were demonstrated. Graphene flakes were grown in a plasma jet generated by a direct current plasma torch with helium and argon as the plasma-forming gases. In the case of argon plasma, the synthesized graphene flakes were relatively thick (2-6 nm) and non-conductive. In helium plasma, for the first time, graphene with a predominance of monolayer flakes and high conductivity was grown in a significant amount using an industrial plasma torch. One-dimensional (1D) flow modeling shows that the helium plasma is a less charged environment providing the formation of thinner graphene flakes with low defect density. These flakes might be used for a water-based suspension of the graphene with PEDOT:PSS (poly(3,4-ethylenedioxythiophene): polystyrene sulfonate) composite to create the structures employing the 2D printing technologies. Good structural quality, low layer resistance, and good mechanical strength combined with the ability to obtain a large amount of the graphene powder, and to control the parameters of the synthesized particles make this material promising for various applications and, above all, for sensors and other devices for flexible electronics and the Internet of things ecosystem.

6.
Materials (Basel) ; 13(7)2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32272737

ABSTRACT

Synthesis of graphene materials in a plasma stream from an up to 40 kW direct current (DC) plasma torch is investigated. These materials are created by means of the conversion of hydrocarbons under the pressure 350-710 Torr without using catalysts, without additional processes of inter-substrate transfer and the elimination of impurities. Helium and argon are used as plasma-forming gas, propane, butane, methane, and acetylene are used as carbon precursors. Electron microscopy and Raman imaging show that synthesis products represent an assembly of flakes varying in the thickness and the level of deformity. An occurrence of hydrogen in the graphene flakes is discovered by X-ray photoelectron spectroscopy, thermal analysis, and express-gravimetry. Its quantity depends on the type of carrier gas. Quasi-one-dimensional approach under the local thermodynamic equilibrium was used to investigate the evolution of the composition of helium and argon plasma jets with hydrocarbon addition. Hydrogen atoms appear in the hydrogen-rich argon jet under higher temperature. This shows that solid particles live longer in the hydrogen-rich environment compared with the helium case providing some enlargement of graphene with less hydrogen in its structure. In conclusion, graphene in flakes appears because of the volumetric synthesis in the hydrogen environment. The most promising directions of the practical use of graphеne flakes are apparently related to structural ceramics.

SELECTION OF CITATIONS
SEARCH DETAIL
...