Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38405763

ABSTRACT

Chimeric antigen receptor (CAR) T cells have made a tremendous impact in the clinic, but potent signaling through the CAR can be detrimental to treatment safety and efficacy. The use of protein degradation to control CAR signaling can address these issues in pre-clinical models. Existing strategies for regulating CAR stability rely on small molecules to induce systemic degradation. In contrast to small molecule regulation, genetic circuits offer a more precise method to control CAR signaling in an autonomous, cell-by-cell fashion. Here, we describe a programmable protein degradation tool that adopts the framework of bioPROTACs, heterobifunctional proteins that are composed of a target recognition domain fused to a domain that recruits the endogenous ubiquitin proteasome system. We develop novel bioPROTACs that utilize a compact four residue degron and demonstrate degradation of cytosolic and membrane protein targets using either a nanobody or synthetic leucine zipper as a protein binder. Our bioPROTACs exhibit potent degradation of CARs and can inhibit CAR signaling in primary human T cells. We demonstrate the utility of our bioPROTACs by constructing a genetic circuit to degrade the tyrosine kinase ZAP70 in response to recognition of a specific membrane-bound antigen. This circuit is able to disrupt CAR T cell signaling only in the presence of a specific cell population. These results suggest that bioPROTACs are a powerful tool for expanding the cell engineering toolbox for CAR T cells.

2.
Science ; 370(6520): 1099-1104, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33243890

ABSTRACT

Living cells often identify their correct partner or target cells by integrating information from multiple receptors, achieving levels of recognition that are difficult to obtain with individual molecular interactions. In this study, we engineered a diverse library of multireceptor cell-cell recognition circuits by using synthetic Notch receptors to transcriptionally interconnect multiple molecular recognition events. These synthetic circuits allow engineered T cells to integrate extra- and intracellular antigen recognition, are robust to heterogeneity, and achieve precise recognition by integrating up to three different antigens with positive or negative logic. A three-antigen AND gate composed of three sequentially linked receptors shows selectivity in vivo, clearing three-antigen tumors while ignoring related two-antigen tumors. Daisy-chaining multiple molecular recognition events together in synthetic circuits provides a powerful way to engineer cellular-level recognition.


Subject(s)
Cell Communication/immunology , Cell Engineering , Receptors, Chimeric Antigen/immunology , Receptors, Notch/immunology , T-Lymphocytes/immunology , Animals , Antigens, Neoplasm/immunology , Humans , Mice , Receptors, Chimeric Antigen/genetics , Receptors, Notch/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...