Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(8): e0156505, 2016.
Article in English | MEDLINE | ID: mdl-27486847

ABSTRACT

The rich get richer principle, manifested by the Preferential attachment (PA) mechanism, is widely considered one of the major factors in the growth of real-world networks. PA stipulates that popular nodes are bound to be more attractive than less popular nodes; for example, highly cited papers are more likely to garner further citations. However, it overlooks the transient nature of popularity, which is often governed by trends. Here, we show that in a wide range of real-world networks the recent popularity of a node, i.e., the extent by which it accumulated links recently, significantly influences its attractiveness and ability to accumulate further links. We proceed to model this observation with a natural extension to PA, named Trending Preferential Attachment (TPA), in which edges become less influential as they age. TPA quantitatively parametrizes a fundamental network property, namely the network's tendency to trends. Through TPA, we find that real-world networks tend to be moderately to highly trendy. Networks are characterized by different susceptibilities to trends, which determine their structure to a large extent. Trendy networks display complex structural traits, such as modular community structure and degree-assortativity, occurring regularly in real-world networks. In summary, this work addresses an inherent trait of complex networks, which greatly affects their growth and structure, and develops a unified model to address its interaction with preferential attachment.


Subject(s)
Models, Theoretical , Bibliometrics , Humans , Social Networking
2.
Proc Natl Acad Sci U S A ; 104(27): 11150-4, 2007 Jul 03.
Article in English | MEDLINE | ID: mdl-17586683

ABSTRACT

We study a map of the Internet (at the autonomous systems level), by introducing and using the method of k-shell decomposition and the methods of percolation theory and fractal geometry, to find a model for the structure of the Internet. In particular, our analysis uses information on the connectivity of the network shells to separate, in a unique (no parameters) way, the Internet into three subcomponents: (i) a nucleus that is a small ( approximately 100 nodes), very well connected globally distributed subgraph; (ii) a fractal subcomponent that is able to connect the bulk of the Internet without congesting the nucleus, with self-similar properties and critical exponents predicted from percolation theory; and (iii) dendrite-like structures, usually isolated nodes that are connected to the rest of the network through the nucleus only. We show that our method of decomposition is robust and provides insight into the underlying structure of the Internet and its functional consequences. Our approach of decomposing the network is general and also useful when studying other complex networks.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(6 Pt 2): 066108, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17280122

ABSTRACT

In this paper we model the tomography of scale-free networks by studying the structure of layers around an arbitrary network node. We find, both analytically and empirically, that the distance distribution of all nodes from a specific network node consists of two regimes. The first is characterized by rapid growth, and the second decays exponentially. We also show analytically that the nodes degree distribution at each layer exhibits a power-law tail with an exponential cutoff. We obtain similar empirical results for the layers surrounding the root of shortest path trees cut from such networks, as well as the Internet.

SELECTION OF CITATIONS
SEARCH DETAIL
...