Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Expr Purif ; 170: 105590, 2020 06.
Article in English | MEDLINE | ID: mdl-32007557

ABSTRACT

N-terminal extensions ("tags") have proven valuable for producing peptides using high throughput recombinant expression technologies. However, the applicability is hampered by the limited options for specific and efficient proteases to release the fully native sequence without additional amino acids in the N-terminal. Here we describe the Escherichia coli (E. coli) expression, purification and characterization of engineered variants of Xaa-Pro dipeptidyl aminopeptidase (Xaa-Pro-DAP) derived from Lactococcus lactis for cleavage of Gly-Pro dipeptide extension in the N-terminal of glucagon and glucagon-like peptide 1 (GLP-1(7-37)). By single amino acid substitution in the Xaa-Pro-DAP protease, significantly higher product yields were achieved. The combination of HRV14 3C protease and engineered Xaa-Pro-DAP is suggested for obtaining native N-terminal of peptides.


Subject(s)
Bacterial Proteins/genetics , Dipeptidases/genetics , Glucagon-Like Peptide 1/genetics , Glucagon/genetics , Lactococcus lactis/enzymology , Amino Acid Substitution , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cloning, Molecular , Dipeptidases/chemistry , Dipeptidases/metabolism , Enzyme Assays , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glucagon/chemistry , Glucagon/metabolism , Glucagon-Like Peptide 1/chemistry , Glucagon-Like Peptide 1/metabolism , Humans , Kinetics , Lactococcus lactis/genetics , Mutagenesis, Site-Directed , Protein Engineering/methods , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
2.
Mol Metab ; 8: 144-157, 2018 02.
Article in English | MEDLINE | ID: mdl-29307512

ABSTRACT

OBJECTIVE: To characterize the EndoC-ßH1 cell line as a model for human beta cells and evaluate its beta cell functionality, focusing on insulin secretion, proliferation, apoptosis and ER stress, with the objective to assess its potential as a screening platform for identification of novel anti-diabetic drug candidates. METHODS: EndoC-ßH1 was transplanted into mice for validation of in vivo functionality. Insulin secretion was evaluated in cells cultured as monolayer and as pseudoislets, as well as in diabetic mice. Cytokine induced apoptosis, glucolipotoxicity, and ER stress responses were assessed. Beta cell relevant mRNA and protein expression were investigated by qPCR and antibody staining. Hundreds of proteins or peptides were tested for their effect on insulin secretion and proliferation. RESULTS: Transplantation of EndoC-ßH1 cells restored normoglycemia in streptozotocin induced diabetic mice. Both in vitro and in vivo, we observed a clear insulin response to glucose, and, in vitro, we found a significant increase in insulin secretion from EndoC-ßH1 pseudoislets compared to monolayer cultures for both glucose and incretins. Apoptosis and ER stress were inducible in the cells and caspase 3/7 activity was elevated in response to cytokines, but not affected by the saturated fatty acid palmitate. By screening of various proteins and peptides, we found Bombesin (BB) receptor agonists and Pituitary Adenylate Cyclase-Activating Polypeptides (PACAP) to significantly induce insulin secretion and the proteins SerpinA6, STC1, and APOH to significantly stimulate proliferation. ER stress was readily induced by Tunicamycin and resulted in a reduction of insulin mRNA. Somatostatin (SST) was found to be expressed by 1% of the cells and manipulation of the SST receptors was found to significantly affect insulin secretion. CONCLUSIONS: Overall, the EndoC-ßH1 cells strongly resemble human islet beta cells in terms of glucose and incretin stimulated insulin secretion capabilities. The cell line has an active cytokine induced caspase 3/7 apoptotic pathway and is responsive to ER stress initiation factors. The cells' ability to proliferate can be further increased by already known compounds as well as by novel peptides and proteins. Based on its robust performance during the functionality assessment assays, the EndoC-ßH1 cell line was successfully used as a screening platform for identification of novel anti-diabetic drug candidates.


Subject(s)
Cell Culture Techniques/methods , Hypoglycemic Agents/pharmacology , Insulin-Secreting Cells/drug effects , Animals , Cell Line , Cells, Cultured , Diabetes Mellitus, Experimental/therapy , Drug Evaluation, Preclinical/methods , Humans , Insulin Secretion , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Mice , Mice, SCID
3.
J Biol Chem ; 291(26): 13689-98, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27189946

ABSTRACT

Calcitonin is a peptide hormone consisting of 32 amino acid residues and the calcitonin receptor is a Class B G protein-coupled receptor (GPCR). The crystal structure of the human calcitonin receptor ectodomain (CTR ECD) in complex with a truncated analogue of salmon calcitonin ([BrPhe(22)]sCT(8-32)) has been determined to 2.1-Å resolution. Parallel analysis of a series of peptide ligands showed that the rank order of binding of the CTR ECD is identical to the rank order of binding of the full-length CTR, confirming the structural integrity and relevance of the isolated CTR ECD. The structure of the CTR ECD is similar to other Class B GPCRs and the ligand binding site is similar to the binding site of the homologous receptors for the calcitonin gene-related peptide (CGRP) and adrenomedulin (AM) recently published (Booe, J. M., Walker, C. S., Barwell, J., Kuteyi, G., Simms, J., Jamaluddin, M. A., Warner, M. L., Bill, R. M., Harris, P. W., Brimble, M. A., Poyner, D. R., Hay, D. L., and Pioszak, A. A. (2015) Mol. Cell 58, 1040-1052). Interestingly the receptor-bound structure of the ligand [BrPhe(22)]sCT(8-32) differs from the receptor-bound structure of the homologous ligands CGRP and AM. They all adopt an extended conformation followed by a C-terminal ß turn, however, [BrPhe(22)]sCT(8-32) adopts a type II turn (Gly(28)-Thr(31)), whereas CGRP and AM adopt type I turns. Our results suggest that a type II turn is the preferred conformation of calcitonin, whereas a type I turn is the preferred conformation of peptides that require RAMPs; CGRP, AM, and amylin. In addition the structure provides a detailed molecular explanation and hypothesis regarding ligand binding properties of CTR and the amylin receptors.


Subject(s)
Calcitonin/chemistry , Fish Proteins/chemistry , Receptors, Calcitonin/chemistry , Salmon , Animals , Calcitonin/genetics , Calcitonin/metabolism , Crystallography, X-Ray , Fish Proteins/genetics , Fish Proteins/metabolism , Humans , Protein Binding , Protein Structure, Quaternary , Protein Structure, Secondary , Receptors, Calcitonin/genetics , Receptors, Calcitonin/metabolism
4.
J Biol Chem ; 281(36): 25869-74, 2006 Sep 08.
Article in English | MEDLINE | ID: mdl-16831875

ABSTRACT

Insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) are both from the same subgroup of receptor tyrosine kinases that exist as covalently bound receptor dimers at the cell surface. For both IR and IGF-IR, the most described forms are homodimer receptors. However, hybrid receptors consisting of one-half IR and one-half IGF-IR are also present at the cell surface. Two splice variants of IR are expressed that enable formation of two isoforms of the IGF-IR/IR hybrid receptor. In this study, these two splice variants of hybrid receptors were studied with respect to binding affinities of insulin, insulin-like growth factor I (IGF-I), and insulin-like growth factor II (IGF-II). Unlike previously published data, in which semipurified receptors have been studied, we found that the two hybrid receptor splice variants had similar binding characteristics with respect to insulin, IGF-I, and IGF-II binding. We studied both semipurified and purified hybrid receptors. In all cases we found that IGF-I had at least 50-fold higher affinity than insulin, irrespective of the splice variant. The binding characteristics of insulin and IGF-I to both splice variants of the hybrid receptors were similar to classical homodimer IGF-IR.


Subject(s)
Alternative Splicing , Insulin-Like Growth Factor I/metabolism , Insulin/metabolism , Protein Isoforms/metabolism , Receptor, IGF Type 1/metabolism , Receptor, Insulin/metabolism , Recombinant Fusion Proteins/metabolism , Animals , Cell Line , Cricetinae , Exons , Humans , Protein Binding , Protein Isoforms/genetics , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/isolation & purification , Receptor, Insulin/genetics , Receptor, Insulin/isolation & purification , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification
5.
Mol Biotechnol ; 29(3): 233-44, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15767701

ABSTRACT

Breast cancer is a leading cause of death for women. The underlying molecular mechanism is still not well understood. In this study, two-dimensional gel electrophoresis combined with mass spectrometry was used to analyze changes in the proteome of infiltrating ductal carcinoma compared to normal breast tissue. Ten sets of two-dimensional gels per experimental condition were analyzed and more than 500 spots each were detected. This revealed 39 spots for which expression in breast cancer cells were reproducibly altered more than twofold compared to normal controls (p < 0.01). These spots represented 25 different proteins after identification using the database search after mass spectrometry, comprising cell defense proteins, enzymes involved in glycolytic energy metabolism and homeostasis, protein folding and structural proteins, proteins involved in cytoskeleton and cell motility, and proteins involved in other functions. In addition, 28 nondifferentially expressed proteins with different functions were also mapped and identified, which might help to establish a two-dimensional gel electrophoresis reference map of human breast cancer. Our study shows that proteomics offers a powerful methodology to detect the proteins that show different expression patterns in breast cancer tissue and may provide an accurate molecular classification. The differentially expressed proteins may be used as potential candidate markers for diagnostic purposes or for determination of tumor sensitivity to therapy. The functional implications of the identified proteins are discussed.


Subject(s)
Biomarkers, Tumor/biosynthesis , Breast Neoplasms/metabolism , Carcinoma, Ductal, Breast/metabolism , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/biosynthesis , Proteome/biosynthesis , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/pathology , Electrophoresis, Gel, Two-Dimensional/methods , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Neoplasm Proteins/genetics , Proteome/genetics , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...