Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 196(1): 321-47, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24240528

ABSTRACT

Haloperidol is an efficacious antipsychotic drug that has serious, unpredictable motor side effects that limit its utility and cause noncompliance in many patients. Using a drug-placebo diallel of the eight founder strains of the Collaborative Cross and their F1 hybrids, we characterized aggregate effects of genetics, sex, parent of origin, and their combinations on haloperidol response. Treating matched pairs of both sexes with drug or placebo, we measured changes in the following: open field activity, inclined screen rigidity, orofacial movements, prepulse inhibition of the acoustic startle response, plasma and brain drug level measurements, and body weight. To understand the genetic architecture of haloperidol response we introduce new statistical methodology linking heritable variation with causal effect of drug treatment. Our new estimators, "difference of models" and "multiple-impute matched pairs", are motivated by the Neyman-Rubin potential outcomes framework and extend our existing Bayesian hierarchical model for the diallel (Lenarcic et al. 2012). Drug-induced rigidity after chronic treatment was affected by mainly additive genetics and parent-of-origin effects (accounting for 28% and 14.8% of the variance), with NZO/HILtJ and 129S1/SvlmJ contributions tending to increase this side effect. Locomotor activity after acute treatment, by contrast, was more affected by strain-specific inbreeding (12.8%). In addition to drug response phenotypes, we examined diallel effects on behavior before treatment and found not only effects of additive genetics (10.2-53.2%) but also strong effects of epistasis (10.64-25.2%). In particular: prepulse inhibition showed additivity and epistasis in about equal proportions (26.1% and 23.7%); there was evidence of nonreciprocal epistasis in pretreatment activity and rigidity; and we estimated a range of effects on body weight that replicate those found in our previous work. Our results provide the first quantitative description of the genetic architecture of haloperidol response in mice and indicate that additive, dominance-like inbreeding and parent-of-origin effects contribute strongly to treatment effect heterogeneity for this drug.


Subject(s)
Dopamine Antagonists/adverse effects , Drug-Related Side Effects and Adverse Reactions/genetics , Haloperidol/adverse effects , Animals , Antipsychotic Agents/adverse effects , Antipsychotic Agents/blood , Antipsychotic Agents/pharmacology , Bayes Theorem , Brain/drug effects , Dopamine Antagonists/blood , Dopamine Antagonists/pharmacology , Drug Monitoring , Epistasis, Genetic , Female , Haloperidol/blood , Haloperidol/pharmacology , Male , Mastication/drug effects , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Placebos/pharmacology , Random Allocation , Reflex, Startle/drug effects , Sex Factors
2.
Genome Res ; 21(8): 1223-38, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21734011

ABSTRACT

Genetic reference populations in model organisms are critical resources for systems genetic analysis of disease related phenotypes. The breeding history of these inbred panels may influence detectable allelic and phenotypic diversity. The existing panel of common inbred strains reflects historical selection biases, and existing recombinant inbred panels have low allelic diversity. All such populations may be subject to consequences of inbreeding depression. The Collaborative Cross (CC) is a mouse reference population with high allelic diversity that is being constructed using a randomized breeding design that systematically outcrosses eight founder strains, followed by inbreeding to obtain new recombinant inbred strains. Five of the eight founders are common laboratory strains, and three are wild-derived. Since its inception, the partially inbred CC has been characterized for physiological, morphological, and behavioral traits. The construction of this population provided a unique opportunity to observe phenotypic variation as new allelic combinations arose through intercrossing and inbreeding to create new stable genetic combinations. Processes including inbreeding depression and its impact on allelic and phenotypic diversity were assessed. Phenotypic variation in the CC breeding population exceeds that of existing mouse genetic reference populations due to both high founder genetic diversity and novel epistatic combinations. However, some focal evidence of allele purging was detected including a suggestive QTL for litter size in a location of changing allele frequency. Despite these inescapable pressures, high diversity and precision for genetic mapping remain. These results demonstrate the potential of the CC population once completed and highlight implications for development of related populations.


Subject(s)
Crosses, Genetic , Inbreeding , Quantitative Trait Loci , Animals , Female , Genetic Variation , Genotype , Litter Size/genetics , Male , Mice , Mice, Inbred Strains , Phenotype , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...