Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38109468

ABSTRACT

Imaging using coherent extreme-ultraviolet (EUV) light provides exceptional capabilities for the characterization of the composition and geometry of nanostructures by probing with high spatial resolution and elemental specificity. We present a multi-modal tabletop EUV imaging reflectometer for high-fidelity metrology of nanostructures. The reflectometer is capable of measurements in three distinct modes: intensity reflectometry, scatterometry, and imaging reflectometry, where each mode addresses different nanostructure characterization challenges. We demonstrate the system's unique ability to quantitatively and non-destructively measure the geometry and composition of nanostructures with tens of square microns field of view and sub-nanometer precision. Parameters such as surface and line edge roughness, density, nanostructure linewidth, and profile, as well as depth-resolved composition, can be quantitatively determined. The results highlight the applicability of EUV metrology to address a wide range of semiconductor and materials science challenges.

2.
Cureus ; 15(3): e36158, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37065375

ABSTRACT

Bupropion is an antidepressant utilized widely for the treatment of various mood disorders and smoking cessation due to its favorable side effect profile, cost, and response to therapy. While serious adverse reactions are rare, in the decades since its approval by the FDA, multiple cases of serum sickness-like reactions to bupropion have been reported, amongst other adverse drug reactions (ADRs). This report is of the case of a 25-year-old female who developed a serum sickness-like reaction to bupropion 21 days after initiation of treatment. She did not respond to conservative therapy but did respond promptly to oral corticosteroids and discontinuation of bupropion. This case serves to bolster the existing literature surrounding ADRs to bupropion and other antidepressant medications in the categories of systemic and dermatologic manifestations.

3.
Phys Rev Lett ; 131(25): 256702, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38181360

ABSTRACT

Time-resolved ultrafast EUV magnetic scattering was used to test a recent prediction of >10 km/s domain wall speeds by optically exciting a magnetic sample with a nanoscale labyrinthine domain pattern. Ultrafast distortion of the diffraction pattern was observed at markedly different timescales compared to the magnetization quenching. The diffraction pattern distortion shows a threshold dependence with laser fluence, not seen for magnetization quenching, consistent with a picture of domain wall motion with pinning sites. Supported by simulations, we show that a speed of ≈66 km/s for highly curved domain walls can explain the experimental data. While our data agree with the prediction of extreme, nonequilibrium wall speeds locally, it differs from the details of the theory, suggesting that additional mechanisms are required to fully understand these effects.

4.
Nat Commun ; 13(1): 4807, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35974009

ABSTRACT

Magnetic skyrmions are topological spin textures that hold great promise as nanoscale information carriers in non-volatile memory and logic devices. While room-temperature magnetic skyrmions and their current-induced motion were recently demonstrated, the stray field resulting from their finite magnetisation and their topological charge limit their minimum size and reliable motion. Antiferromagnetic skyrmions allow to lift these limitations owing to their vanishing magnetisation and net zero topological charge, promising ultra-small and ultra-fast skyrmions. Here, we report on the observation of isolated skyrmions in compensated synthetic antiferromagnets at zero field and room temperature using X-ray magnetic microscopy. Micromagnetic simulations and an analytical model confirm the chiral antiferromagnetic nature of these skyrmions and allow the identification of the physical mechanisms controlling their size and stability. Finally, we demonstrate the nucleation of synthetic antiferromagnetic skyrmions via local current injection and ultra-fast laser excitation.

5.
Case Rep Dent ; 2022: 8749836, 2022.
Article in English | MEDLINE | ID: mdl-35392490

ABSTRACT

Malignancies of salivary gland origin are rare in children. Mucoepidermoid carcinoma (MEC) is the most common histologic type of salivary gland neoplasm in pediatrics. We report a rare case of parotid MEC in a 20-month-old female patient. The tumor was composed of nests of epidermoid cells with nuclei appearing vesicular, pleomorphic, and hyperchromatic with an admixture of mucous cells and cystic spaces within a prominent connective tissue stroma. Immunohistochemically, the epidermoid cells showed cytokeratin 7 and P63 positivity, and mucous cells were positive for mucicarmine. Molecularly, this case was positive for MAML2 rearrangement by FISH. To our knowledge, this is one of the youngest cases of MEC of the parotid gland reported in the English literature.

6.
Article in English | MEDLINE | ID: mdl-37152070

ABSTRACT

Ultrathin Ta/CoFeB/Pt trilayer structures are relevant to a wide range of spintronic applications, from magnetic tunnel junctions to skyrmionics devices. Controlling the perpendicular magnetic anisotropy, Gilbert damping and Dzyaloshinskii-Moriya interaction in the CoFeB layer is key for these applications. We examine the role of sputter gas composition during the Pt overlayer deposition of a Ta/CoFeB/Pt trilayer in Ar, Kr and Xe working gas environments during direct current magnetron sputtering. Decreasing density of the Pt layer (from 21 g/cm3 to 15 g/cm3) was apparent in specular x-ray reflectivity measurements of the trilayer films when increasing the molecular weight of the sputtering gas from Ar to Kr to Xe. Significant effects on the Gilbert damping and the interfacial Dzyaloshinskii-Moriya interaction (DMI) energy were observed, with increases in the damping from 0.037(1) to 0.042(1) to 0.048(1), and reductions in the interfacial DMI from 0.47(4) mJ/m2 to 0.45(5) mJ/m2 to 0.39(4) mJ/m2. The ability to control the perpendicular magnetization and DMI strength of these materials through judicious interfacial control is a means toward magnetic devices with better stability at smaller lateral dimension, key to device scaling for spintronic device arrays.

7.
Phys Rev Lett ; 127(20): 207201, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34860034

ABSTRACT

We quantify the presence of spin-mixed states in ferromagnetic 3D transition metals by precise measurement of the orbital moment. While central to phenomena such as Elliot-Yafet scattering, quantification of the spin-mixing parameter has hitherto been confined to theoretical calculations. We demonstrate that this information is also available by experimental means. Comparison of ferromagnetic resonance spectroscopy with x-ray magnetic circular dichroism results show that Kittel's original derivation of the spectroscopic g factor requires modification, to include spin mixing of valence band states. Our results are supported by ab initio relativistic electronic structure theory.

8.
Appl Phys Lett ; 117(4)2020.
Article in English | MEDLINE | ID: mdl-33154594

ABSTRACT

We report on the impact of nonlinear four-magnon scattering on magnon transport in microstructured Co25Fe75 waveguides with low magnetic damping. We determine the magnon propagation length with microfocused Brillouin light scattering over a broad range of excitation powers and detect a decrease of the attenuation length at high powers. This is consistent with the onset of nonlinear four-magnon scattering. Hence, it is critical to stay in the linear regime, when deriving damping parameters from the magnon propagation length. Otherwise, the intrinsic nonlinearity of magnetization dynamics may lead to a misinterpretation of magnon propagation lengths and, thus, to incorrect values of the magnetic damping of the system.

9.
J Med Chem ; 63(20): 11756-11785, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32959656

ABSTRACT

There is an urgent need to develop new efficacious antimalarials to address the emerging drug-resistant clinical cases. Our previous phenotypic screening identified styrylquinoline UCF501 as a promising antimalarial compound. To optimize UCF501, we herein report a detailed structure-activity relationship study of 2-arylvinylquinolines, leading to the discovery of potent, low nanomolar antiplasmodial compounds against a Plasmodium falciparum CQ-resistant Dd2 strain, with excellent selectivity profiles (resistance index < 1 and selectivity index > 200). Several metabolically stable 2-arylvinylquinolines are identified as fast-acting agents that kill asexual blood-stage parasites at the trophozoite phase, and the most promising compound 24 also demonstrates transmission blocking potential. Additionally, the monophosphate salt of 24 exhibits excellent in vivo antimalarial efficacy in the murine model without noticeable toxicity. Thus, the 2-arylvinylquinolines represent a promising class of antimalarial drug leads.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Antimalarials/chemical synthesis , Antimalarials/chemistry , Dose-Response Relationship, Drug , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship
10.
Sci Adv ; 6(3): eaaz1100, 2020 01.
Article in English | MEDLINE | ID: mdl-32010777

ABSTRACT

Heusler compounds are exciting materials for future spintronics applications because they display a wide range of tunable electronic and magnetic interactions. Here, we use a femtosecond laser to directly transfer spin polarization from one element to another in a half-metallic Heusler material, Co2MnGe. This spin transfer initiates as soon as light is incident on the material, demonstrating spatial transfer of angular momentum between neighboring atomic sites on time scales < 10 fs. Using ultrafast high harmonic pulses to simultaneously and independently probe the magnetic state of two elements during laser excitation, we find that the magnetization of Co is enhanced, while that of Mn rapidly quenches. Density functional theory calculations show that the optical excitation directly transfers spin from one magnetic sublattice to another through preferred spin-polarized excitation pathways. This direct manipulation of spins via light provides a path toward spintronic devices that can operate on few-femtosecond or faster time scales.

11.
Phys Rev B ; 101(2)2020 Jan.
Article in English | MEDLINE | ID: mdl-38983879

ABSTRACT

We report on the Dzyaloshinskii-Moriya (DMI) interaction at the interface between a ferromagnet and an oxide. We demonstrate experimentally that oxides can give rise to DMI. By comparison of systems comprised of Pt/Co90Fe10/oxide and Cu/Co90Fe10/oxide, we also show how oxidation of one interface can enhance and add to the total DMI of that generated by the Pt interface. This is due to the fact that the DMI on both interfaces promotes left-handed chirality. Finally, by use of ferromagnetic resonance spectroscopy, we show that the DMI and the spectroscopic splitting factor, which is a measure of the orbital momentum, are correlated. This indicates the importance of hybridization and charge transfer at the oxide interface for the DMI.

12.
Microbiol Resour Announc ; 8(50)2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31831614

ABSTRACT

As an opportunistic pathogen, Citrobacter freundii is involved in a wide spectrum of nosocomial infections. C. freundii phages may prove useful as therapeutics for treating infections caused by multidrug-resistant C. freundii strains. Here, we report the complete genome sequence of C. freundii siphophage Sazh, which is closely related to Enterobacteria phages T1 and TLS.

13.
PLoS One ; 14(12): e0225439, 2019.
Article in English | MEDLINE | ID: mdl-31800624

ABSTRACT

We present a method for identifying features (time periods of interest) in data sets consisting of time-indexed model output. The method is used as a diagnostic to quickly focus the attention on a subset of the data before further analysis methods are applied. Mathematically, the infinity norm errors of empirical orthogonal function (EOF) reconstructions are calculated for each time output. The result is an EOF reconstruction error map which clearly identifies features as changes in the error structure over time. The ubiquity of EOF-type methods in a wide range of disciplines reduces barriers to comprehension and implementation of the method. We apply the error map method to three different Computational Fluid Dynamics (CFD) data sets as examples: the development of a spontaneous instability in a large amplitude internal solitary wave, an internal wave interacting with a density profile change, and the collision of two waves of different vertical mode. In all cases the EOF error map method identifies relevant features which are worthy of further study.


Subject(s)
Hydrodynamics , Models, Theoretical , Time
14.
Phys Rev B ; 992019.
Article in English | MEDLINE | ID: mdl-31579293

ABSTRACT

We report a large spin Hall effect in the 3d transition metal alloy Ni x Cu1-x for x ∈ {0.3, 0.75}, detected via the ferromagnetic resonance of a permalloy (Py = Ni80Fe20) film deposited in a bilayer with the alloy. A thickness series at x = 0.6, for which the alloy is paramagnetic at room temperature, allows us to determine the spin Hall ratio θ SH ≈ 1, spin diffusion length λs, spin mixing conductance G ⇅, and damping due to spin memory loss αSML. We compare our results with similar experiments on Py/Pt bilayers measured using the same method. Ab initio band structure calculations with disorder and spin-orbit coupling suggest an intrinsic spin Hall effect in Ni x Cu1-x alloys, although the experiments here cannot distinguish between extrinsic and intrinsic mechanisms.

15.
Heliyon ; 5(5): e01708, 2019 May.
Article in English | MEDLINE | ID: mdl-31193538

ABSTRACT

We present a computationally inexpensive, flexible feature identification method which uses a comparison of time series to identify a rank-ordered set of features in geophysically-sourced data sets. Many physical phenomena perturb multiple physical variables nearly simultaneously, and so features are identified as time periods in which there are local maxima of absolute deviation in all time series. Unlike other available methods, this method allows the analyst to tune the method using their knowledge of the physical context. The method is applied to a data set from a moored array of instruments deployed in the coastal environment of Monterey Bay, California, and a data set from sensors placed within the submerged Yax Chen Cave System in Tulum, Quintana Roo, Mexico. These example data sets demonstrate that the method allows for the automated identification of features which are worthy of further study.

16.
Appl Phys Lett ; 115(12)2019.
Article in English | MEDLINE | ID: mdl-33149347

ABSTRACT

We report ultralow intrinsic magnetic damping in Co25Fe75 heterostructures, reaching the low 10-4 regime at room temperature. By using a broadband ferromagnetic resonance technique in out-of-plane geometry, we extracted the dynamic magnetic properties of several Co25Fe75-based heterostructures with varying ferromagnetic layer thicknesses. By measuring radiative damping and spin pumping effects, we found the intrinsic damping of a 26 nm thick sample to be α 0 ≲ 3.18 × 10-4. Furthermore, using Brillouin light scattering microscopy, we measured spin-wave propagation lengths of up to (21 ± 1) µm in a 26 nm thick Co25Fe75 heterostructure at room temperature, which is in excellent agreement with the measured damping.

17.
J Appl Phys ; 1262019.
Article in English | MEDLINE | ID: mdl-33149369

ABSTRACT

We investigate the magnetoelastic properties of Co25Fe75 and Co10Fe90 thin films by measuring the mechanical properties of a doubly clamped string resonator covered with multilayer stacks containing these films. For the magnetostrictive constants, we find λ Co25 Fe75 = (-20.68 ± 0.25) × 10-6 and λ Co10 Fe90 = (-9.80 ± 0.12) × 10-6 at room temperature, in contrast to the positive magnetostriction previously found in bulk CoFe crystals. Co25Fe75 thin films unite low damping and sizable magnetostriction and are thus a prime candidate for micromechanical magnonic applications, such as sensors and hybrid phonon-magnon systems.

18.
Phys Rev B ; 992019.
Article in English | MEDLINE | ID: mdl-33336122

ABSTRACT

The interfacial Dzyaloshinskii-Moriya interaction (DMI) is important for chiral domain walls (DWs) and for stabilizing magnetic skyrmions. We study the effects of introducing increasing thicknesses of Ir, from zero to 2 nm, into a Pt/Co/Ta multilayer between the Co and Ta layers. There is a marked increase in magnetic moment, due to the suppression of the dead layer at the interface with Ta, but the perpendicular anisotropy is hardly affected. All samples show a universal scaling of the field-driven DW velocity across the creep and depinning regimes. Asymmetric bubble expansion shows that DWs in all of the samples have the left-handed Néel form. The value of in-plane magnetic field at which the creep velocity shows a minimum drops markedly on the introduction of Ir, as does the frequency shift of the Stokes and anti-Stokes peaks in Brillouin light scattering (BLS) measurements. Despite this qualitative similarity, there are quantitative differences in the DMI strength given by the two measurements, with BLS often returning higher values. Many features in bubble expansion velocity curves do not fit simple models commonly used, namely a lack of symmetry about the velocity minimum and no difference in velocities at high in-plane fields. These features are explained by the use of a new model in which the depinning field is allowed to vary with in-plane field in a way determined from micromagnetic simulations. This theory shows that the velocity minimum underestimates the DMI field, consistent with BLS giving higher values. Our results suggest that the DMI at an Ir/Co interface has the same sign as the DMI at a Pt/Co interface.

19.
Phys Rev Lett ; 120(9): 093002, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29547333

ABSTRACT

Recent advances in high-order harmonic generation have made it possible to use a tabletop-scale setup to produce spatially and temporally coherent beams of light with bandwidth spanning 12 octaves, from the ultraviolet up to x-ray photon energies >1.6 keV. Here we demonstrate the use of this light for x-ray-absorption spectroscopy at the K- and L-absorption edges of solids at photon energies near 1 keV. We also report x-ray-absorption spectroscopy in the water window spectral region (284-543 eV) using a high flux high-order harmonic generation x-ray supercontinuum with 10^{9} photons/s in 1% bandwidth, 3 orders of magnitude larger than has previously been possible using tabletop sources. Since this x-ray radiation emerges as a single attosecond-to-femtosecond pulse with peak brightness exceeding 10^{26} photons/s/mrad^{2}/mm^{2}/1% bandwidth, these novel coherent x-ray sources are ideal for probing the fastest molecular and materials processes on femtosecond-to-attosecond time scales and picometer length scales.

20.
Nat Photonics ; 13(2)2018.
Article in English | MEDLINE | ID: mdl-33101455

ABSTRACT

Optical interactions are governed by both spin and angular momentum conservation laws, which serve as a tool for controlling light-matter interactions or elucidating electron dynamics and structure of complex systems. Here, we uncover a form of simultaneous spin and orbital angular momentum conservation and show, theoretically and experimentally, that this phenomenon allows for unprecedented control over the divergence and polarization of extreme-ultraviolet vortex beams. High harmonics with spin and orbital angular momenta are produced, opening a novel regime of angular momentum conservation that allows for manipulation of the polarization of attosecond pulses-from linear to circular-and for the generation of circularly polarized vortices with tailored orbital angular momentum, including harmonic vortices with the same topological charge as the driving laser beam. Our work paves the way to ultrafast studies of chiral systems using high-harmonic beams with designer spin and orbital angular momentum.

SELECTION OF CITATIONS
SEARCH DETAIL
...