Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 198: 115820, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029668

ABSTRACT

Island communities, like the Republic of the Marshall Islands (RMI), depend on marine resources for food and economics, so plastic ingestion by those resources is a concern. The gastrointestinal tracts of nine species of reef fish across five trophic groups (97 fish) were examined for plastics >1 mm. Over 2100 putative plastic particles from 72 fish were identified under light microscopy. Only 115 of these from 47 fish passed a plastic screening method using Fourier-transform infrared microspectroscopy (µFTIR) in reflectance mode. All of these were identified as natural materials in a final confirmatory analysis, attenuated total reflectance FTIR. The high false-positive rate of visual and µFTIR methods highlight the importance of using multiple polymer identification methods. Limited studies on ingested plastic in reef fish present challenging comparisons because of different methods used. No plastic >1 mm were found in the RMI reef fish, reassuring human consumers.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Humans , Plastics/chemistry , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Fishes , Micronesia
2.
Mar Pollut Bull ; 196: 115570, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37776741

ABSTRACT

Discarded fishing gear (DFG) comprises most of the plastic in the North Pacific Ocean and causes environmental and economic losses. Building evidence on the material construction of fishing gear types is critical to develop solutions to reduce DFG amounts and impacts. We forensically assessed the construction and chemical composition of eight different gear types removed as DFG around O'ahu, Hawai'i. A thorough dissection and novel analysis was conducted including the documentation of gear constructions, polymer identification using attenuated total reflection-Fourier transform infrared spectroscopy and differential scanning calorimetry, and elemental additive detection using X-ray fluorescence. Twenty-six different polymers were identified, and most gear consisted of polyethylene variants or blends. This inventory of physical and chemical characterization of DFG can help future polymer identification of particular gear types through visual techniques. Additionally, it can aid in identifying sources of these gear types and promote recycling options.


Subject(s)
Fisheries , Hunting , Hawaii , Pacific Ocean , Polymers
3.
Environ Toxicol Chem ; 42(5): 1109-1123, 2023 05.
Article in English | MEDLINE | ID: mdl-36866800

ABSTRACT

The present study determined if green sea turtles (Chelonia mydas) in Kailua Bay, Oahu, in the Hawaiian Islands have elevated blood and scute lead (Pb), arsenic (As), and antimony (Sb) concentrations resulting from lead deposition at a historic skeet shooting range. Blood and scute samples were collected and analyzed for Pb, As, and Sb via inductively coupled plasma-mass spectrometry. Prey, water, and sediment samples were also analyzed. Turtle samples in Kailua Bay (45) have blood Pb concentrations (328 ± 195 ng/g) greater than a reference population (Howick Group of Islands, 29.2 ± 17.1 ng/g). Compared with other green turtle populations, only turtles in Oman, Brazil, and San Diego, CA have blood Pb concentrations greater than turtles in Kailua Bay. The estimated daily exposure of Pb from algae sources in Kailua Bay (0.12 mg/kg/day) was significantly lower than the no observed adverse effect level (100 mg/kg) of red-eared slider turtles. However, the chronic effects of Pb on sea turtles is poorly understood and continued monitoring of this population will increase our understanding of the Pb and As loads of sea turtles in Kailua Bay. Environ Toxicol Chem 2023;42:1109-1123. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Arsenic , Metals, Heavy , Turtles , Water Pollutants, Chemical , Animals , Hawaii , Lead/analysis , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Arsenic/analysis
4.
Environ Pollut ; 286: 117142, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-33965805

ABSTRACT

Cavity nesting bees are proficient and important pollinators that can augment or replace honey bee pollination services for some crops. Relatively little is known about specific pesticide concentrations present in cavity nesting insect reed matrices and associated potential risks to cavity nesting bees. Nesting substrates (Phragmites australis reeds in bundles) were deployed in an agriculturally intensive landscape to evaluate colonization and agrochemical exposure among cavity nesting pollinators over two consecutive field seasons. Composition of insect species colonizing reeds within nest bundles varied considerably; those placed near beef cattle feed yards were dominated by wasps (93% of the total number of individuals occupying reed nest bundles), whereas nest bundles deployed in cropland-dominated landscapes were colonized primarily by leaf cutter bees (71%). All nesting/brood matrices in reeds (mud, leaves, brood, pollen) contained agrochemicals. Mud used in brood chamber construction at feed yard sites contained 21 of 23 agrochemicals included in analysis and >70% of leaf substrate stored in reeds contained at least one agrochemical. Moxidectin was most frequently detected across all reed matrices from feed yard sites, and moxidectin concentrations in nonviable larvae were more than four times higher than those quantified in viable larvae. Agrochemical concentrations in leaf material and pollen were also quantified at levels that may have induced toxic effects among developing larvae. To our knowledge, this is the first study to characterize agrochemical concentrations in multiple reed matrices provisioned by cavity-nesting insects. Use of nest bundles revealed that cavity nesting pollinators in agriculturally intensive regions are exposed to agrochemicals during all life stages, at relatively high frequencies, and at potentially lethal concentrations. These results demonstrate the utility of nest bundles for characterizing risks to cavity nesting insects inhabiting agriculturally intensive regions.


Subject(s)
Agrochemicals , Pollination , Animals , Bees , Cattle , Crops, Agricultural , Insecta , Larva , Nesting Behavior
5.
Environ Toxicol Chem ; 40(1): 208-218, 2021 01.
Article in English | MEDLINE | ID: mdl-33103806

ABSTRACT

Sea turtles are exposed to trace elements through water, sediment, and food. Exposure to these elements has been shown to decrease immune function, impair growth, and decrease reproductive output in wildlife. The present study compares trace element concentrations in green turtles in captivity at Sea Life Park Hawaii (n = 6) to wild green turtles in Kapoho Bay, Hawaii, USA (n = 5-7). Blood and scute samples were collected and analyzed for 11 elements via inductively coupled plasma-mass spectrometry (ICP-MS). Selenium was significantly greater (p < 0.05) in the blood of captive turtles compared with wild turtles, whereas V, Ni, and Pb were significantly greater in the blood of wild turtles. In scute, V, Cu, Se, and Cr were significantly greater in captive turtles, whereas As was significantly greater in wild turtles. Pelleted food fed to the captive turtles and representative samples of the wild turtle diet were analyzed via ICP-MS to calculate trophic transfer factors and daily intake values. Wild turtles had greater estimated daily intake than captive turtles for all elements except Cu and Se. Because captive turtles are fed a diet very different from that of their wild counterparts, captive turtles do not represent control or reference samples for chemical exposure studies in wild turtles. No toxic thresholds are known for sea turtles, but rehabilitation and managed care facilities should monitor sea turtle elemental concentrations to ensure the animals' health. Environ Toxicol Chem 2021;40:208-218. © 2020 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Subject(s)
Selenium , Trace Elements , Turtles , Water Pollutants, Chemical , Animals , Animals, Wild , Hawaii , Trace Elements/analysis , Water Pollutants, Chemical/analysis
6.
Environ Toxicol Chem ; 38(12): 2629-2636, 2019 12.
Article in English | MEDLINE | ID: mdl-31397915

ABSTRACT

In the Southern High Plains of the United States, beef cattle feed yards and row crop agriculture are predominant sources of agrochemical usage. Beef cattle feed yards use large quantities of veterinary pharmaceuticals to promote cattle growth and health, along with insecticides to control insect pests, whereas row crop-based agriculture relies on herbicides, fungicides, and insecticides to increase yields. Previous studies have documented the occurrence of agrochemicals beyond feed yard and row crop agriculture boundaries in uncultivated, marginal areas, raising concern that migratory pollinators and pollinators indigenous to the Southern High Plains frequenting these remaining habitat corridors may become exposed to toxic agrochemicals. Larvae of the painted lady butterfly (Vanessa cardui) were used to investigate the potential toxicity of agrochemicals used on feed yards and in row crop agriculture among pollinators. Moxidectin, an antiparasiticide used on beef cattle feed yards, was determined to be extremely toxic to V. cardui larvae, with a lethal dose at which 50% of larvae died of 2.1 ± 0.1 ng/g. Pyraclostrobin, clothianidin, and permethrin all delayed V. cardui development. However, moxidectin was the only chemical that produced significant toxic effects at environmentally relevant concentrations. These results indicate that agrochemicals originating from feed yards have the potential to adversely impact the development of pollinator larvae occurring in the Southern High Plains. Environ Toxicol Chem 2019;38:2629-2636. © 2019 SETAC.


Subject(s)
Agrochemicals/toxicity , Butterflies/drug effects , Larva/growth & development , Animals , Butterflies/growth & development , Ecosystem , Insecticides/toxicity , Larva/drug effects , Veterinary Drugs/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...