Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1321555, 2023.
Article in English | MEDLINE | ID: mdl-38312357

ABSTRACT

The challenges facing tree orchard production in the coming years will be largely driven by changes in the climate affecting the sustainability of farming practices in specific geographical regions. Identifying key traits that enable tree crops to modify their growth to varying environmental conditions and taking advantage of new crop improvement opportunities and technologies will ensure the tree crop industry remains viable and profitable into the future. In this review article we 1) outline climate and sustainability challenges relevant to horticultural tree crop industries, 2) describe key tree crop traits targeted for improvement in agroecosystem productivity and resilience to environmental change, and 3) discuss existing and emerging genomic technologies that provide opportunities for industries to future proof the next generation of orchards.

2.
Hortic Res ; 9: uhac157, 2022.
Article in English | MEDLINE | ID: mdl-36204209

ABSTRACT

Avocado (Persea americana) is a member of the magnoliids, an early branching lineage of angiosperms that has high value globally with the fruit being highly nutritious. Here, we report a chromosome-level genome assembly for the commercial avocado cultivar Hass, which represents 80% of the world's avocado consumption. The DNA contigs produced from Pacific Biosciences HiFi reads were further assembled using a previously published version of the genome supported by a genetic map. The total assembly was 913 Mb with a contig N50 of 84 Mb. Contigs assigned to the 12 chromosomes represented 874 Mb and covered 98.8% of benchmarked single-copy genes from embryophytes. Annotation of protein coding sequences identified 48 915 avocado genes of which 39 207 could be ascribed functions. The genome contained 62.6% repeat elements. Specific biosynthetic pathways of interest in the genome were investigated. The analysis suggested that the predominant pathway of heptose biosynthesis in avocado may be through sedoheptulose 1,7 bisphosphate rather than via alternative routes. Endoglucanase genes were high in number, consistent with avocado using cellulase for fruit ripening. The avocado genome appeared to have a limited number of translocations between homeologous chromosomes, despite having undergone multiple genome duplication events. Proteome clustering with related species permitted identification of genes unique to avocado and other members of the Lauraceae family, as well as genes unique to species diverged near or prior to the divergence of monocots and eudicots. This genome provides a tool to support future advances in the development of elite avocado varieties with higher yields and fruit quality.

3.
Plants (Basel) ; 11(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35161230

ABSTRACT

High-quality DNA and RNA forms the basis of genomic and genetic investigations. The extraction of DNA and RNA from woody trees, like avocado (Persea americana Mill.), is challenging due to compounds which interact with nucleic acids and influence separation. Previously reported methods of DNA and RNA extraction from avocado have issues of low yield, quality and applicability across different cultivars and tissue types. In the current study, methods have been optimised for high-quality DNA extraction from 40 avocado cultivars and RNA extraction from multiple tissue types, including roots, stem, leaves, flowers and fruits. The method is based on the modification of the cetyltrimethylammonium bromide buffer, centred around the specific optimisation of chemicals, such as sodium dodecyl sulphate, polyvinylpyrrolidone, sodium sulphite, polyethylene glycol and ß-mercaptoethanol. The DNA extraction method yielded high-molecular weight DNA from the leaf tissue of 40 avocado cultivars belonging to Mexican, Guatemalan and West Indian avocado horticultural groups. The method was further optimised for RNA extraction from different avocado plant parts, enabling extraction using amounts as low as ~10 mg of starting material. The DNA and RNA extracted was successfully used for long- and short-read sequencing and gene expression analysis. The methods developed may also be applicable to other recalcitrant plant species.

4.
PLoS Genet ; 16(7): e1008812, 2020 07.
Article in English | MEDLINE | ID: mdl-32658893

ABSTRACT

In Arabidopsis, CONSTANS (CO) integrates light and circadian clock signals to promote flowering under long days (LD). In the grasses, a duplication generated two paralogs designated as CONSTANS1 (CO1) and CONSTANS2 (CO2). Here we show that in tetraploid wheat plants grown under LD, combined loss-of-function mutations in the A and B-genome homeologs of CO1 and CO2 (co1 co2) result in a small (3 d) but significant (P<0.0001) acceleration of heading time both in PHOTOPERIOD1 (PPD1) sensitive (Ppd-A1b, functional ancestral allele) and insensitive (Ppd-A1a, functional dominant allele) backgrounds. Under short days (SD), co1 co2 mutants headed 13 d earlier than the wild type (P<0.0001) in the presence of Ppd-A1a. However, in the presence of Ppd-A1b, spikes from both genotypes failed to emerge by 180 d. These results indicate that CO1 and CO2 operate mainly as weak heading time repressors in both LD and SD. By contrast, in ppd1 mutants with loss-of-function mutations in both PPD1 homeologs, the wild type Co1 allele accelerated heading time >60 d relative to the co1 mutant allele under LD. We detected significant genetic interactions among CO1, CO2 and PPD1 genes on heading time, which were reflected in complex interactions at the transcriptional and protein levels. Loss-of-function mutations in PPD1 delayed heading more than combined co1 co2 mutations and, more importantly, PPD1 was able to perceive and respond to differences in photoperiod in the absence of functional CO1 and CO2 genes. Similarly, CO1 was able to accelerate heading time in response to LD in the absence of a functional PPD1. Taken together, these results indicate that PPD1 and CO1 are able to respond to photoperiod in the absence of each other, and that interactions between these two photoperiod pathways at the transcriptional and protein levels are important to fine-tune the flowering response in wheat.


Subject(s)
Epistasis, Genetic/genetics , Photoperiod , Plant Proteins/genetics , Triticum/genetics , Alleles , Arabidopsis , Circadian Clocks/genetics , Circadian Rhythm/genetics , Flowers/genetics , Flowers/growth & development , Gene Expression Regulation, Plant/genetics , Genotype , Transcription Factors/genetics , Triticum/growth & development
5.
J Exp Bot ; 70(1): 193-204, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30295847

ABSTRACT

FLOWERING LOCUS T2 (FT2) is the closest paralog of the FT1 flowering gene in the temperate grasses. Here we show that overexpression of FT2 in Brachypodium distachyon and barley results in precocious flowering and reduced spikelet number, while down-regulation by RNA interference results in delayed flowering and a reduced percentage of filled florets. Similarly, truncation mutations of FT2 homeologs in tetraploid wheat delayed flowering (2-4 d) and reduced fertility. The wheat ft2 mutants also showed a significant increase in the number of spikelets per spike, with a longer spike development period potentially contributing to the delayed heading time. In the wheat leaves, FT2 was expressed later than FT1, suggesting a relatively smaller role for FT2 in the initiation of the reproductive phase. FT2 transcripts were detected in the shoot apical meristem and increased during early spike development. Transversal sections of the developing spike showed the highest FT2 transcript levels in the distal part, where new spikelets are formed. Our results suggest that, in wheat, FT2 plays an important role in spike development and fertility and a limited role in the timing of the transition between the vegetative and reproductive shoot apical meristem.


Subject(s)
Brachypodium/genetics , Flowers/growth & development , Gene Expression Regulation, Plant , Hordeum/genetics , Plant Proteins/genetics , Triticum/genetics , Brachypodium/growth & development , Fertility/genetics , Flowers/genetics , Genes, Plant/genetics , Hordeum/growth & development , Plant Proteins/metabolism , Reproduction/genetics , Triticum/growth & development
6.
Plant Physiol ; 174(2): 1139-1150, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28408541

ABSTRACT

Plants utilize variation in day length (photoperiod) to anticipate seasonal changes. They respond by modulating their growth and development to maximize seed production, which in cereal crops is directly related to yield. In wheat (Triticum aestivum), the acceleration of flowering under long days (LD) is dependent on the light induction of PHOTOPERIOD1 (PPD1) by phytochromes. Under LD, PPD1 activates FLOWERING LOCUS T1 (FT1), a mobile signaling protein that travels from the leaves to the shoot apical meristem to promote flowering. Here, we show that the interruption of long nights by short pulses of light ("night-break" [NB]) accelerates wheat flowering, suggesting that the duration of the night is critical for wheat photoperiodic response. PPD1 transcription was rapidly upregulated by NBs, and the magnitude of this induction increased with the length of darkness preceding the NB Cycloheximide abolished the NB up-regulation of PPD1, suggesting that this process is dependent on active protein synthesis during darkness. While one NB was sufficient to induce PPD1, more than 15 NBs were required to induce high levels of FT1 expression and a strong acceleration of flowering. Multiple NBs did not affect the expression of core circadian clock genes. The acceleration of flowering by NB disappeared in ppd1-null mutants, demonstrating that this response is mediated by PPD1 The acceleration of flowering was strongest when NBs were applied in the middle of the night, suggesting that in addition to PPD1, other circadian-controlled factors are required for the up-regulation of FT1 expression and the acceleration of flowering.


Subject(s)
Darkness , Flowers/physiology , Photoperiod , Plant Proteins/metabolism , Triticum/physiology , Alleles , Circadian Clocks/genetics , Flowers/genetics , Gene Expression Regulation, Plant , Genes, Plant , Models, Biological , Phytochrome/metabolism , Plant Proteins/genetics , Protein Biosynthesis , Time Factors , Transcription, Genetic , Triticum/genetics
7.
Plant Methods ; 10: 23, 2014.
Article in English | MEDLINE | ID: mdl-25050131

ABSTRACT

BACKGROUND: Measuring grain characteristics is an integral component of cereal breeding and research into genetic control of seed development. Measures such as thousand grain weight are fast, but do not give an indication of variation within a sample. Other methods exist for detailed analysis of grain size, but are generally costly and very low throughput. Grain colour analysis is generally difficult to perform with accuracy, and existing methods are expensive and involved. RESULTS: We have developed a software method to measure grain size and colour from images captured with consumer level flatbed scanners, in a robust, standardised way. The accuracy and precision of the method have been demonstrated through screening wheat and Brachypodium distachyon populations for variation in size and colour. CONCLUSION: By using GrainScan, cheap and fast measurement of grain colour and size will enable plant research programs to gain deeper understanding of material, where limited or no information is currently available.

8.
PLoS One ; 8(11): e79459, 2013.
Article in English | MEDLINE | ID: mdl-24244507

ABSTRACT

Flowering time in wheat and barley is known to be modified by mutations in the Photoperiod-1 (Ppd-1) gene. Semi-dominant Ppd-1a mutations conferring an early flowering phenotype are well documented in wheat but gene sequencing has also identified candidate loss of function mutations for Ppd-A1 and Ppd-D1. By analogy to the recessive ppd-H1 mutation in barley, loss of function mutations in wheat are predicted to delay flowering under long day conditions. To test this experimentally, introgression lines were developed in the spring wheat variety 'Paragon'. Plants lacking a Ppd-B1 gene were identified from a gamma irradiated 'Paragon' population. These were crossed with the other introgression lines to generate plants with candidate loss of function mutations on one, two or three genomes. Lines lacking Ppd-B1 flowered 10 to 15 days later than controls under long days. Candidate loss of function Ppd-A1 alleles delayed flowering by 1 to 5 days while candidate loss of function Ppd-D1 alleles did not affect flowering time. Loss of Ppd-A1 gave an enhanced effect, and loss of Ppd-D1 became detectable in lines where Ppd-B1 was absent, indicating effects may be buffered by functional Ppd-1 alleles on other genomes. Expression analysis revealed that delayed flowering was associated with reduced expression of the TaFT1 gene and increased expression of TaCO1. A survey of the GEDIFLUX wheat collection grown in the UK and North Western Europe between the 1940s and 1980s and the A.E. Watkins global collection of landraces from the 1920s and 1930s showed that the identified candidate loss of function mutations for Ppd-D1 were common and widespread, while the identified candidate Ppd-A1 loss of function mutation was rare in countries around the Mediterranean and in the Far East but was common in North Western Europe. This may reflect a possible benefit of the latter in northern locations.


Subject(s)
Alleles , Flowers/genetics , Mutation , Phenotype , Plant Proteins/genetics , Triticum/genetics , Flowers/metabolism , Gene Expression , Gene Frequency , Genotype , Plant Proteins/metabolism , Triticum/metabolism
9.
Plant J ; 71(1): 71-84, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22372488

ABSTRACT

Flowering time is a trait that has been extensively altered during wheat domestication, enabling it to be highly productive in diverse environments and providing a rich source of variation for studying adaptation mechanisms. Hexaploid wheat is ancestrally a long-day plant, but many environments require varieties with photoperiod insensitivity (PI) that can flower in short days. PI results from mutations in the Ppd-1 gene on the A, B or D genomes, with individual mutations conferring different degrees of earliness. The basis of this is poorly understood. Using a common genetic background, the effects of A, B and D genome PI mutations on genes of the circadian clock and photoperiod pathway were studied using genome-specific expression assays. Ppd-1 PI mutations did not affect the clock or immediate clock outputs, but affected TaCO1 and TaFT1, with a reduction in TaCO1 expression as TaFT1 expression increased. Therefore, although Ppd-1 is related to PRR genes of the Arabidopsis circadian clock, Ppd-1 affects flowering by an alternative route, most likely by upregulating TaFT1 with a feedback effect that reduces TaCO1 expression. Individual genes in the circadian clock and photoperiod pathway were predominantly expressed from one genome, and there was no genome specificity in Ppd-1 action. Lines combining PI mutations on two or three genomes had enhanced earliness with higher levels, but not earlier induction, of TaFT1, showing that there is a direct quantitative relationship between Ppd-1 mutations, TaFT1 expression and flowering.


Subject(s)
Flowers/physiology , Genome, Plant , Mutation , Photoperiod , Triticum/genetics , Circadian Clocks , Crosses, Genetic , Flowers/genetics , Gene Expression Regulation, Plant , Polyploidy , Triticum/physiology
10.
Funct Integr Genomics ; 9(4): 485-98, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19578911

ABSTRACT

DNA binding with One Finger (Dof) protein is a plant-specific transcription factor implicated in the regulation of many important plant-specific processes, including photosynthesis and carbohydrate metabolism. This study has identified 31 Dof genes (TaDof) in bread wheat through extensive analysis of current nucleotide databases. Phylogenetic analysis suggests that the TaDof family can be divided into four clades. Expression analysis of the TaDof family across all major organs using quantitative RT-PCR and searches of the wheat genome array database revealed that the majority of TaDof members were predominately expressed in vegetative organs. A large number of TaDof members were down-regulated by drought and/or were responsive to the light and dark cycle. Further expression analysis revealed that light up-regulated TaDof members were highly correlated in expression with a number of genes that are involved in photosynthesis or sucrose transport. These data suggest that the TaDof family may have an important role in light-mediated gene regulation, including involvement in the photosynthetic process.


Subject(s)
Gene Expression Regulation, Plant , Light , Plant Proteins/genetics , Transcription Factors/genetics , Triticum , Amino Acid Sequence , Gene Expression Profiling , Genome, Plant , Molecular Sequence Data , Photosynthesis/physiology , Phylogeny , Plant Proteins/classification , Plant Proteins/metabolism , Sequence Alignment , Transcription Factors/classification , Transcription Factors/metabolism , Triticum/genetics , Triticum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...