Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Oncol ; : JCO2018788620, 2018 Sep 11.
Article in English | MEDLINE | ID: mdl-30204536

ABSTRACT

Purpose The US National Cancer Institute (NCI) Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) was developed to enable patient reporting of symptomatic adverse events in oncology clinical research. This study was designed to assess the feasibility and resource requirements associated with implementing PRO-CTCAE in a multicenter trial. Methods Patients with locally advanced rectal cancer enrolled in the National Cancer Institute-sponsored North Central Cancer Treatment Group (Alliance) Preoperative Radiation or Selective Preoperative Radiation and Evaluation before Chemotherapy and Total Mesorectal Excision trial were asked to self-report 30 PRO-CTCAE items weekly from home during preoperative therapy, and every 6 months after surgery, via either the Web or an automated telephone system. If participants did not self-report within 3 days, a central coordinator called them to complete the items. Compliance was defined as the proportion of participants who completed PRO-CTCAE assessments at expected time points. Results The prespecified PRO-CTCAE analysis was conducted after the 500th patient completed the 6-month follow-up (median age, 56 years; 33% female; 12% nonwhite; 43% high school education or less; 5% Spanish speaking), across 165 sites. PRO-CTCAE was reported by participants at 4,491 of 4,882 expected preoperative time points (92.0% compliance), of which 3,771 (77.2%) were self-reported by participants and 720 (14.7%) were collected via central coordinator backup. Compliance at 6-month post-treatment follow-up was 333 of 468 (71.2%), with 122 (26.1%) via backup. Site research associates spent a median of 15 minutes on PRO-CTCAE work for each patient visit. Work by a central coordinator required a 50% time commitment. Conclusion Home-based reporting of PRO-CTCAE in a multicenter trial is feasible, with high patient compliance and low site administrative requirements. PRO-CTCAE data capture is improved through centralized backup calls.

2.
Am J Respir Cell Mol Biol ; 50(5): 942-52, 2014 May.
Article in English | MEDLINE | ID: mdl-24303801

ABSTRACT

Heat shock protein (hsp) 90 inhibition attenuates NF-κB activation and blocks inflammation. However, the precise mechanism of NF-κB regulation by hsp90 in the endothelium is not clear. We investigated the mechanisms of hsp90 inhibition by 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) on NF-κB activation by LPS in primary human lung microvascular endothelial cells. Transcriptional activation of NF-κB was measured by luciferase reporter assay, gene expression by real-time RT-PCR, DNA binding of transcription factors by chromatin immunoprecipitation assay, protein-protein interaction by coimmunoprecipitation/immunoblotting, histone deacetylase (HDAC)/histone acetyltransferase enzyme activity by fluorometry, and nucleosome eviction by partial microccocal DNase digestion. In human lung microvascular endothelial cells, 17-AAG-induced degradation of IKBα was accomplished regardless of the phosphorylation/ubiquitination state of the protein. Hence, 17-AAG did not block LPS-induced NF-κB nuclear translocation and DNA binding activity. Instead, 17-AAG blocked the recruitment of the coactivator, cAMP response element binding protein binding protein, and prevented the assembly of a transcriptionally competent RNA polymerase II complex at the κB elements of the IKBα (an NF-κB-responsive gene) promoter. The effect of LPS on IKBα mRNA expression was associated with rapid deacetylation of histone-H3(Lys9) and a dramatic down-regulation of core histone H3 binding. Even though treatment with an HDAC inhibitor produced the same effect as hsp90 inhibition, the effect of 17-AAG was independent of HDAC. We conclude that hsp90 inhibition attenuates NF-κB transcriptional activation by preventing coactivator recruitment and nucleosome eviction from the target promoter in human lung endothelial cells.


Subject(s)
Benzoquinones/pharmacology , Endothelial Cells/drug effects , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lactams, Macrocyclic/pharmacology , Lipopolysaccharides/pharmacology , Lung/drug effects , Microvessels/drug effects , NF-kappa B/antagonists & inhibitors , Active Transport, Cell Nucleus , Cells, Cultured , Down-Regulation/drug effects , Endothelial Cells/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histones/genetics , Histones/metabolism , Humans , I-kappa B Proteins/genetics , I-kappa B Proteins/metabolism , Lung/metabolism , Microvessels/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Phosphorylation , Promoter Regions, Genetic , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...