Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 85(21): 10107-16, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-23957530

ABSTRACT

In recent years, chemical imaging was prognosticated to become one of the key analytical applications for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). However, moderate spatial resolution and the associated measurement time required for a larger sampling area, have restricted this versatile, high sensitivity technique from being routinely used in two-dimensional chemical imaging. This work describes the development and investigation of a low dispersion sample chamber (tube cell), which allows improvement of the imaging capabilities by reduction of the single LA shot duration to 30 ms (full width at 1% maximum). The new tube cell is based on a constant laminar flow and a well-controlled delivery of the laser-ablated aerosol into the transport system, leading to minimized tailing of the aerosol washout and helping to separate the signals even at repetition rates as high as 20-30 Hz. To demonstrate the improved imaging capabilities, microstructured metallic thin film patterns were analyzed at a spatial resolution of a few micrometers. The LA-ICP-MS results obtained were comparable to Synchrotron-based micro-X-ray fluorescence (SR-microXRF). The suitability of the newly designed cell for multielement acquisitions was demonstrated using a simultaneous ICP-Mattauch-Herzog-MS. Finally, the novel laser ablation cell was applied to image the distribution of a metal-tagged biomarker in a thin section of breast cancer tissue. This application demonstrates that the technique is able to produce subcellular (~1 µm) spatial resolution, which is crucial for morphological assessment in cancer diagnostics.


Subject(s)
Laser Therapy , Mass Spectrometry/methods , Breast Neoplasms/pathology , Female , Humans , Lasers
2.
ACS Appl Mater Interfaces ; 4(7): 3535-41, 2012 Jul 25.
Article in English | MEDLINE | ID: mdl-22738236

ABSTRACT

Patterned deposition of polymer light-emitting diode (PLED) pixels is a challenge for electronic display applications. PLEDs have additional problems requiring solvent orthogonality of different materials in adjacent layers. We present the fabrication of a PLED pixel by the sequential deposition of two different layers with laser-induced forward transfer (LIFT), a "dry" deposition technique. This novel use of LIFT has been compared to "normal" LIFT, where all the layers are transferred in a single step, and a conventional PLED fabrication process. For the sequential LIFT, a 50-nm film of an alcohol-soluble polyfluorene (PFN) is transferred onto a receiver with a transparent anode, before an aluminum cathode is transferred on top. Both steps use a triazene polymer dynamic release layer and are performed in a medium vacuum (1 mbar) across a 15 µm gap. The rough morphologies of the single-layer PFN pixels and the PLED device characteristics have been investigated and compared to both bilayer Al/PFN pixels fabricated by normal LIFT and conventionally fabricated devices. The functionality of the sequential LIFT pixels (0.003 cd/A, up to 200 mA/cm(2), at 30-40 V) demonstrates the suitability of LIFT for sequential patterned printing of different thin-film layers.

SELECTION OF CITATIONS
SEARCH DETAIL
...