Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
JACC Basic Transl Sci ; 8(10): 1379-1388, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38094686

ABSTRACT

Ligands for the serotonin 2B receptor (5-HT2B) have shown potential to treat pulmonary arterial hypertension in preclinical models but cannot be used in humans because of predicted off-target neurological effects. The aim of this study was to develop novel systemically restricted compounds targeting 5-HT2B. Here, we show that mice treated with VU6047534 had decreased RVSP compared with control treatment in both the prevention and intervention studies using Sugen-hypoxia. VU6047534 is a novel 5-HT2B partial agonist that is peripherally restricted and able to both prevent and treat Sugen-hypoxia-induced pulmonary arterial hypertension. We have synthesized and characterized a structurally novel series of 5-HT2B ligands with high potency and selectivity for the 5-HT2B receptor subtype. Next-generation 5-HT2B ligands with similar characteristics, and predicted to be systemically restricted in humans, are currently advancing to investigational new drug-enabling studies.

2.
Front Med (Lausanne) ; 10: 1276422, 2023.
Article in English | MEDLINE | ID: mdl-37869164

ABSTRACT

Introduction: Pulmonary arterial hypertension is a fatal cardiopulmonary disease. Leptin, a neuroendocrine hormone released by adipose tissue, has a complex relationship with cardiovascular diseases, including PAH. Leptin is thought to be an important factor linking metabolic syndrome and cardiovascular disorders. Given the published association between metabolic syndrome and RV dysfunction in PAH, we sought to determine the association between leptin and RV dysfunction. We hypothesized that in PAH-RV, leptin influences metabolic changes via leptin receptors, which can be manipulated by metformin. Methods: Plasma leptin was measured in PAH patients and healthy controls from a published trial of metformin in PAH. Leptin receptor localization was detected in RV from PAH patients, healthy controls, animal models of PH with RV dysfunction before and after metformin treatment, and cultured cardiomyocytes with two different BMPR2 mutants by performing immunohistochemical and cell fractionation studies. Functional studies were conducted in cultured cardiomyocytes to examine the role of leptin and metformin in lipid-driven mitochondrial respiration. Results: In human studies, we found that plasma leptin levels were higher in PAH patients and moderately correlated with higher BMI, but not in healthy controls. Circulating leptin levels were reduced by metformin treatment, and these findings were confirmed in an animal model of RV dysfunction. Leptin receptor expression was increased in PAH-RV cardiomyocytes. In animal models of RV dysfunction and cultured cardiomyocytes with BMPR2 mutation, we found increased expression and membrane localization of the leptin receptor. In cultured cardiomyocytes with BMPR2 mutation, leptin moderately influences palmitate uptake, possibly via CD36, in a mutation-specific manner. Furthermore, in cultured cardiomyocytes, the Seahorse XFe96 Extracellular Flux Analyzer and gene expression data indicate that leptin may not directly influence lipid-driven mitochondrial respiration in BMPR2 mutant cardiomyocytes. However, metformin alone or when supplemented with leptin can improve lipid-driven mitochondrial respiration in BMPR2 mutant cardiomyocytes. The effect of metformin on lipid-driven mitochondrial respiration in cardiomyocytes is BMPR2 mutation-specific. Conclusion: In PAH, increased circulating leptin can influence metabolic signaling in RV cardiomyocytes via the leptin receptor; in particular, it may alter lipid-dependent RV metabolism in combination with metformin in a mutation-specific manner and warrants further investigation.

3.
Cells ; 10(9)2021 09 03.
Article in English | MEDLINE | ID: mdl-34571956

ABSTRACT

Pulmonary arterial hypertension (PAH) is a progressive lung disease caused by thickening of the pulmonary arterial wall and luminal obliteration of the small peripheral arteries leading to increase in vascular resistance which elevates pulmonary artery pressure that eventually causes right heart failure and death. We have previously shown that transcription factor Msx1 (mainly expressed during embryogenesis) is strongly upregulated in transformed lymphocytes obtained from PAH patients, especially IPAH. Under pathological conditions, Msx1 overexpression can cause cell dedifferentiation or cell apoptosis. We hypothesized that Msx1 overexpression contributes to loss of small pulmonary vessels in PAH. In IPAH lung, MSX1 protein localization was strikingly increased in muscularized remodeled pulmonary vessels, whereas it was undetectable in control pulmonary arteries. We developed a transgenic mouse model overexpressing MSX1 (MSX1OE) by about 4-fold and exposed these mice to normoxic, sugen hypoxic (3 weeks) or hyperoxic (100% 02 for 3 weeks) conditions. Under normoxic conditions, compared to controls, MSX1OE mice demonstrated a 30-fold and 2-fold increase in lung Msx1 mRNA and protein expression, respectively. There was a significant retinal capillary dropout (p < 0.01) in MSX1OE mice, which was increased further (p < 0.03) with sugen hypoxia. At baseline, the number of pulmonary vessels in MSX1OE mice was similar to controls. In sugen-hypoxia-treated MSX1OE mice, the number of small (0-25 uM) and medium (25-50 uM) size muscularized vessels increased approximately 2-fold (p < 0.01) compared to baseline controls; however, they were strikingly lower (p < 0.001) in number than in sugen-hypoxia-treated control mice. In MSX1OE mouse lung, 104 genes were upregulated and 67 genes were downregulated compared to controls. Similarly, in PVECs, 156 genes were upregulated and 320 genes were downregulated from siRNA to MSX1OE, and in PVSMCs, 65 genes were upregulated and 321 genes were downregulated from siRNA to MSX1OE (with control in the middle). Many of the statistically significant GO groups associated with MSX1 expression in lung, PVECs, and PVSMCs were similar, and were involved in cell cycle, cytoskeletal and macromolecule organization, and programmed cell death. Overexpression of MSX1 suppresses many cell-cycle-related genes in PVSMCs but induces them in PVECs. In conclusion, overexpression of Msx1 leads to loss of pulmonary vessels, which is exacerbated by sugen hypoxia, and functional consequences of Msx1 overexpression are cell-dependent.


Subject(s)
Hypoxia/metabolism , Lung/metabolism , MSX1 Transcription Factor/metabolism , Pulmonary Artery/metabolism , Animals , Apoptosis/physiology , Cell Cycle/physiology , Cell Differentiation/physiology , Down-Regulation/physiology , Female , Humans , Male , Mice , Up-Regulation/physiology
4.
Front Med (Lausanne) ; 7: 540, 2020.
Article in English | MEDLINE | ID: mdl-33015095

ABSTRACT

Background: In 2012, mutations in Cav1 were found to be the driving mutation in several cases of heritable pulmonary arterial hypertension (PAH). These mutations replaced the last 21 amino acids of Cav1 with a novel 22-amino-acid sequence. Because previously only Cav1 knockouts had been studied in the context of PAH, examining the in vivo effects of this novel mutation holds promise for new understanding of the role of Cav1 in disease etiology. Methods: The new 22 amino acids created by the human mutation were knocked into the native mouse Cav1 locus. The mice underwent hemodynamic, energy balance, and inflammatory measurements, both at baseline and after being stressed with either a metabolic or an inflammatory challenge [low-dose lipopolysaccharide (LPS)]. To metabolically challenge the mice, they were injected with streptozotocin (STZ) and fed a high-fat diet for 12 weeks. Results: Very little mutant protein was found in vivo (roughly 2% of wild-type by mass spectrometry), probably because of degradation after failure to traffic from the endoplasmic reticulum. The homozygous mutants developed a mild, low-penetrance PAH similar to that described previously in knockouts, and neither baseline nor metabolic nor inflammatory stress resulted in pressures above normal in heterozygous animals. The homozygous mutants had increased lean mass and worsened oral glucose tolerance, as previously described in knockouts. Novel findings include the preservation of Cav2 and accessory proteins in the liver and the kidney, while they are lost with homozygous Cav1 mutation in the lungs. We also found that the homozygous mutants had a significantly lower tolerance to voluntary spontaneous exercise than the wild-type mice, with the heterozygous mice at an intermediate level. The mutants also had higher circulating monocytes, with both heterozygous and homozygous animals having higher pulmonary MCP1 and MCP5 proteins. The heterozygous animals also lost weight at an LPS challenge level at which the wild-type mice continued to gain weight. Conclusions: The Cav1 mutation identified in human patients in 2012 is molecularly similar to a knockout of Cav1. It results in not only metabolic deficiencies and mild pulmonary hypertension, as expected, but also an inflammatory phenotype and reduced spontaneous exercise.

5.
Circ Res ; 123(12): e51-e64, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30566041

ABSTRACT

RATIONALE: Pulmonary arterial hypertension is a deadly disease of the pulmonary vasculature for which no disease-modifying therapies exist. Small-vessel stiffening and remodeling are fundamental pathological features of pulmonary arterial hypertension that occur early and drive further endovascular cell dysfunction. Bone marrow (BM)-derived proangiogenic cells (PACs), a specialized heterogeneous subpopulation of myeloid lineage cells, are thought to play an important role in pathogenesis. OBJECTIVE: To determine whether BM-derived PACs directly contributed to experimental pulmonary hypertension (PH) by promoting small-vessel stiffening through 5-HT2B (serotonin 2B receptor)-mediated signaling. METHODS AND RESULTS: We performed BM transplants using transgenic donor animals expressing diphtheria toxin secondary to activation of an endothelial-specific tamoxifen-inducible Cre and induced experimental PH using hypoxia with SU5416 to enhance endovascular injury and ablated BM-derived PACs, after which we measured right ventricular systolic pressures in a closed-chest procedure. BM-derived PAC lineage tracing was accomplished by transplanting BM from transgenic donor animals with fluorescently labeled hematopoietic cells and treating mice with a 5-HT2B antagonist. BM-derived PAC ablation both prevented and reversed experimental PH with SU5416-enhanced endovascular injury, reducing the number of muscularized pulmonary arterioles and normalizing arteriole stiffness as measured by atomic force microscopy. Similarly, treatment with a pharmacological antagonist of 5-HT2B also prevented experimental PH, reducing the number and stiffness of muscularized pulmonary arterioles. PACs accelerated pulmonary microvascular endothelial cell injury response in vitro, and the presence of BM-derived PACs significantly correlated with stiffer pulmonary arterioles in pulmonary arterial hypertension patients and mice with experimental PH. RNA sequencing of BM-derived PACs showed that 5-HT2B antagonism significantly altered biologic pathways regulating cell proliferation, locomotion and migration, and cytokine production and response to cytokine stimulus. CONCLUSIONS: Together, our findings illustrate that BM-derived PACs directly contribute to experimental PH with SU5416-enhanced endovascular injury by mediating small-vessel stiffening and remodeling in a 5-HT2B signaling-dependent manner.


Subject(s)
Hypertension, Pulmonary/pathology , Myeloid Progenitor Cells/metabolism , Receptor, Serotonin, 5-HT2B/metabolism , Vascular Stiffness , Angiogenesis Inhibitors/toxicity , Animals , Arterioles/pathology , Cell Lineage , Cells, Cultured , Hypertension, Pulmonary/blood , Hypertension, Pulmonary/etiology , Indoles/toxicity , Lung/blood supply , Mice , Mice, Inbred C57BL , Myeloid Progenitor Cells/cytology , Myeloid Progenitor Cells/transplantation , Pyrroles/toxicity
6.
Front Physiol ; 9: 271, 2018.
Article in English | MEDLINE | ID: mdl-29731719

ABSTRACT

Background: Pulmonary hypertension (PH) is a progressive cardiovascular disease, characterized by endothelial and smooth muscle dysfunction and vascular remodeling, followed by right heart failure. Group III PH develops secondarily to chronic lung disease such as idiopathic pulmonary fibrosis (IPF), and both hastens and predicts mortality despite of all known pharmacological interventions. Thus, there is urgent need for development of newer treatment strategies. Objective: Angiotensin converting enzyme 2 (ACE2), a member of the renin angiotensin family, is therapeutically beneficial in animal models of pulmonary vascular diseases and is currently in human clinical trials for primary PH. Although previous studies suggest that administration of ACE2 prevents PH secondary to bleomycin-induced murine IPF, it is unknown whether ACE2 can reverse or treat existing disease. Therefore, in the present study, we tested the efficacy of ACE2 in arresting the progression of group 3 PH. Methods: To establish pulmonary fibrosis, we administered 0.018 U/g bleomycin 2x/week for 4 weeks in adult FVB/N mice, and sacrificed 5 weeks following the first injection. ACE2 or vehicle was administered via osmotic pump for the final 2 weeks, beginning 3 weeks after bleomycin. Echocardiography and hemodynamic assessment was performed prior to sacrifice and tissue collection. Results: Administration of bleomycin significantly increased lung collagen expression, pulmonary vascular remodeling, and pulmonary arterial pressure, and led to mild right ventricular hypertrophy. Acute treatment with ACE2 significantly attenuated vascular remodeling and increased pulmonary SOD2 expression without measurable effects on pulmonary fibrosis. This was associated with nonsignificant positive effects on pulmonary arterial pressure and cardiac function. Conclusion: Collectively, our findings enumerate that ACE2 treatment improved pulmonary vascular muscularization following bleomycin exposure, concomitant with increased SOD2 expression. Although it may not alter the pulmonary disease course of IPF, ACE2 could be an effective therapeutic strategy for the treatment of group 3 PH.

7.
Reproduction ; 155(5): 447-456, 2018 05.
Article in English | MEDLINE | ID: mdl-29500186

ABSTRACT

In mouse models used to study parturition or pre-clinical therapeutic testing, measurement of uterine contractions is limited to either ex vivo isometric tension or operative intrauterine pressure (IUP). The goal of this study was to: (1) develop a method for transcervical insertion of a pressure catheter to measure in vivo intrauterine contractile pressure during mouse pregnancy, (2) determine whether this method can be utilized numerous times in a single mouse pregnancy without affecting the timing of delivery or fetal outcome and (3) compare the in vivo contractile activity between mouse models of term and preterm labor (PTL). Visualization of the cervix allowed intrauterine pressure catheter (IUPC) placement into anesthetized pregnant mice (plug = day 1, delivery = day 19.5). The amplitude, frequency, duration and area under the curve (AUC) of IUP was lowest on days 16-18, increased significantly (P < 0.05) on the morning of day 19 and reached maximal levels during by the afternoon of day 19 and into the intrapartum period. An AUC threshold of 2.77 mmHg discriminated between inactive labor (day 19 am) and active labor (day 19 pm and intrapartum period). Mice examined on a single vs every experimental timepoint did not have significantly different IUP, timing of delivery, offspring number or fetal/neonatal weight. The IUP was significantly greater in LPS-treated and RU486-treated mouse models of PTL compared to time-matched vehicle control mice. Intrapartum IUP was not significantly different between term and preterm mice. We conclude that utilization of a transcervical IUPC allows sensitive assessment of in vivo uterine contractile activity and labor progression in mouse models without the need for operative approaches.


Subject(s)
Catheters , Parturition/physiology , Premature Birth/physiopathology , Uterine Contraction/physiology , Animals , Disease Models, Animal , Female , Lipopolysaccharides/pharmacology , Mice , Mifepristone/pharmacology , Parturition/drug effects , Pregnancy , Pressure , Uterine Contraction/drug effects
8.
Pulm Circ ; 7(4): 768-776, 2017.
Article in English | MEDLINE | ID: mdl-28828907

ABSTRACT

Bone morphogenetic protein receptor type 2 (BMPR2) mutations are present in patients with heritable and idiopathic pulmonary arterial hypertension (PAH). Circulating levels of interleukin-1 (IL-1) are raised in patients and animal models. Whether interplay between BMP and IL-1 signaling can explain the local manifestation of PAH in the lung remains unclear. Cell culture, siRNA, and mRNA microarray analysis of RNA isolated from human pulmonary artery (PASMC) and aortic (AoSMC) smooth muscle cells were used. R899X+/- BMPR2 transgenic mice fed a Western diet for six weeks were given daily injections of IL-1ß prior to assessment for PAH and tissue collection. PASMC have reduced inflammatory activation in response to IL-1ß compared with AoSMCs; however, PASMC with reduced BMPR2 demonstrated an exaggerated response. Mice treated with IL-1ß had higher white blood cell counts and significantly raised serum protein levels of IL-6 and osteoprotegerin (OPG) plasma levels recapitulating in vitro data. Phenotypically, IL-1ß treated mice demonstrated increased pulmonary vascular remodeling. IL-1ß induces an exaggerated pulmonary artery specific transcriptomic inflammatory response when BMPR2 signaling is reduced.

9.
Mol Cell Biol ; 36(10): 1584-94, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26976644

ABSTRACT

Hypoxia-inducible factors 1 and 2 (HIF-1 and -2) control oxygen supply to tissues by regulating erythropoiesis, angiogenesis and vascular homeostasis. HIFs are regulated in response to oxygen availability by prolyl-4-hydroxylase domain (PHD) proteins, with PHD2 being the main oxygen sensor that controls HIF activity under normoxia. In this study, we used a genetic approach to investigate the endothelial PHD2/HIF axis in the regulation of vascular function. We found that inactivation of Phd2 in endothelial cells specifically resulted in severe pulmonary hypertension (∼118% increase in right ventricular systolic pressure) but not polycythemia and was associated with abnormal muscularization of peripheral pulmonary arteries and right ventricular hypertrophy. Concurrent inactivation of either Hif1a or Hif2a in endothelial cell-specific Phd2 mutants demonstrated that the development of pulmonary hypertension was dependent on HIF-2α but not HIF-1α. Furthermore, endothelial HIF-2α was required for the development of increased pulmonary artery pressures in a model of pulmonary hypertension induced by chronic hypoxia. We propose that these HIF-2-dependent effects are partially due to increased expression of vasoconstrictor molecule endothelin 1 and a concomitant decrease in vasodilatory apelin receptor signaling. Taken together, our data identify endothelial HIF-2 as a key transcription factor in the pathogenesis of pulmonary hypertension.


Subject(s)
Hypertension, Pulmonary/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Arterial Pressure , Cell Hypoxia , Disease Models, Animal , Hypertension, Pulmonary/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Mice , Mutation , Pulmonary Artery/physiology , Signal Transduction
10.
PLoS One ; 11(2): e0148657, 2016.
Article in English | MEDLINE | ID: mdl-26863209

ABSTRACT

Serotonergic anorexigens are the primary pharmacologic risk factor associated with pulmonary arterial hypertension (PAH), and the resulting PAH is clinically indistinguishable from the heritable form of disease, associated with BMPR2 mutations. Both BMPR2 mutation and agonists to the serotonin receptor HTR2B have been shown to cause activation of SRC tyrosine kinase; conversely, antagonists to HTR2B inhibit SRC trafficking and downstream function. To test the hypothesis that a HTR2B antagonist can prevent BMRP2 mutation induced PAH by restricting aberrant SRC trafficking and downstream activity, we exposed BMPR2 mutant mice, which spontaneously develop PAH, to a HTR2B antagonist, SB204741, to block the SRC activation caused by BMPR2 mutation. SB204741 prevented the development of PAH in BMPR2 mutant mice, reduced recruitment of inflammatory cells to their lungs, and reduced muscularization of their blood vessels. By atomic force microscopy, we determined that BMPR2 mutant mice normally had a doubling of vessel stiffness, which was substantially normalized by HTR2B inhibition. SB204741 reduced SRC phosphorylation and downstream activity in BMPR2 mutant mice. Gene expression arrays indicate that the primary changes were in cytoskeletal and muscle contractility genes. These results were confirmed by gel contraction assays showing that HTR2B inhibition nearly normalizes the 400% increase in gel contraction normally seen in BMPR2 mutant smooth muscle cells. Heritable PAH results from increased SRC activation, cellular contraction, and vascular resistance, but antagonism of HTR2B prevents SRC phosphorylation, downstream activity, and PAH in BMPR2 mutant mice.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/genetics , Hypertension, Pulmonary/prevention & control , Indoles/pharmacology , Receptor, Serotonin, 5-HT2B/genetics , Serotonin Antagonists/pharmacology , Urea/analogs & derivatives , src-Family Kinases/genetics , Animals , Bone Morphogenetic Protein Receptors, Type II/deficiency , Cell Movement/drug effects , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Lung/drug effects , Lung/metabolism , Lung/pathology , Mice , Mice, Transgenic , Muscle Contraction/drug effects , Muscle Proteins/genetics , Muscle Proteins/metabolism , Mutation , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Oligonucleotide Array Sequence Analysis , Phosphorylation , Protein Transport , Receptor, Serotonin, 5-HT2B/metabolism , Signal Transduction , Urea/pharmacology , Vascular Stiffness/drug effects , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/metabolism
11.
Circulation ; 133(1): 82-97, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26487756

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension (PAH) is a proliferative disease of the pulmonary vasculature that preferentially affects women. Estrogens such as the metabolite 16α-hydroxyestrone (16αOHE) may contribute to PAH pathogenesis, and alterations in cellular energy metabolism associate with PAH. We hypothesized that 16αOHE promotes heritable PAH (HPAH) via microRNA-29 (miR-29) family upregulation and that antagonism of miR-29 would attenuate pulmonary hypertension in transgenic mouse models of Bmpr2 mutation. METHODS AND RESULTS: MicroRNA array profiling of human lung tissue found elevation of microRNAs associated with energy metabolism, including the miR-29 family, among HPAH patients. miR-29 expression was 2-fold higher in Bmpr2 mutant mice lungs at baseline compared with controls and 4 to 8-fold higher in Bmpr2 mice exposed to 16αOHE 1.25 µg/h for 4 weeks. Blot analyses of Bmpr2 mouse lung protein showed significant reductions in peroxisome proliferator-activated receptor-γ and CD36 in those mice exposed to 16αOHE and protein derived from HPAH lungs compared with controls. Bmpr2 mice treated with anti-miR-29 (20-mg/kg injections for 6 weeks) had improvements in hemodynamic profile, histology, and markers of dysregulated energy metabolism compared with controls. Pulmonary artery smooth muscle cells derived from Bmpr2 murine lungs demonstrated mitochondrial abnormalities, which improved with anti-miR-29 transfection in vitro; endothelial-like cells derived from HPAH patient induced pluripotent stem cell lines were similar and improved with anti-miR-29 treatment. CONCLUSIONS: 16αOHE promotes the development of HPAH via upregulation of miR-29, which alters molecular and functional indexes of energy metabolism. Antagonism of miR-29 improves in vivo and in vitro features of HPAH and reveals a possible novel therapeutic target.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/biosynthesis , Cellular Microenvironment/physiology , Hydroxyestrones/metabolism , Hypertension, Pulmonary/metabolism , MicroRNAs/biosynthesis , Animals , Cellular Microenvironment/drug effects , Female , Humans , Hydroxyestrones/toxicity , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/diagnosis , Male , Mice , Mice, Transgenic , MicroRNAs/antagonists & inhibitors
12.
Am J Physiol Lung Cell Mol Physiol ; 310(3): L249-62, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26637636

ABSTRACT

Pulmonary hypertension (PH) complicating chronic parenchymal lung disease, such as idiopathic pulmonary fibrosis, results in significant morbidity and mortality. Since the hypoxia-inducible factor (HIF) signaling pathway is important for development of pulmonary hypertension in chronic hypoxia, we investigated whether HIF signaling in vascular endothelium regulates development of PH related to pulmonary fibrosis. We generated a transgenic model in which HIF is deleted within vascular endothelial cells and then exposed these mice to chronic intraperitoneal bleomycin to induce PH associated with lung fibrosis. Although no differences in the degree of fibrotic remodeling were observed, we found that endothelial HIF-deficient mice were protected against development of PH, including right ventricle and pulmonary vessel remodeling. Similarly, endothelial HIF-deficient mice were protected from PH after a 4-wk exposure to normobaric hypoxia. In vitro studies of pulmonary vascular endothelial cells isolated from the HIF-targeted mice and controls revealed that endothelial HIF signaling increases endothelial cell expression of connective tissue growth factor, enhances vascular permeability, and promotes pulmonary artery smooth muscle cell proliferation and wound healing ability, all of which have the potential to impact the development of PH in vivo. Taken together, these studies demonstrate that vascular endothelial cell HIF signaling is necessary for development of hypoxia and pulmonary fibrosis associated PH. As such, HIF and HIF-regulated targets represent a therapeutic target in these conditions.


Subject(s)
Endothelial Cells/metabolism , Hypertension, Pulmonary/metabolism , Hypoxia-Inducible Factor 1/metabolism , Pulmonary Artery/metabolism , Animals , Cell Proliferation/physiology , Cells, Cultured , Endothelium, Vascular/metabolism , Fibrosis/etiology , Hypertension, Pulmonary/complications , Hypoxia/metabolism , Mice, Transgenic , Muscle, Smooth, Vascular/metabolism , Vascular Remodeling/physiology
13.
Neurosurgery ; 70(2 Suppl Operative): 313-20, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21904259

ABSTRACT

BACKGROUND: The mechanisms and management of delayed intracerebral hemorrhage (dICH) after treatment of brain arteriovenous malformations (AVMs) are poorly understood and widely debated. Many clinical predictive factors have been theorized for dICH after an otherwise uneventful AVM embolization, but there is an absence of data to discern their significance. OBJECTIVE: To analyze 13 proposed predictive factors and to assess their potential in guiding prevention strategies. METHODS: One hundred sixty-eight embolization procedures were performed on 67 patients with brain AVMs by a single surgeon. Patients were divided into 2 groups: those with symptomatic dICH and control subjects. Thirteen factors were analyzed: age, sex, race, previous ICH, Spetzler-Martin grade, AVM size, eloquence, embolic volume, embolic agent, percent obliteration, and timing, number, and stage of embolizations. Univariate and multivariate analyses were performed on these factors to determine significance. RESULTS: Six procedures were complicated by dICH; 5 (83%) occurred after the final planned procedure. The volume of embolic agent was significantly higher in the dICH group (4.5 ± 1.0 mL) compared with control subjects (1.7 ± 0.2 mL) in both univariate and multivariate analyses (P < .01), even after controlling for AVM size. AVM size was significant in univariate analysis but not multivariate analysis. There were no statistically significant differences between the groups for any of the other possible predictive factors. CONCLUSION: High volume of embolic agent administered per procedure is an independent predictive factor for dICH. Limiting the injected volume for each procedure may reduce this poorly understood complication.


Subject(s)
Embolization, Therapeutic/adverse effects , Embolization, Therapeutic/methods , Intracranial Arteriovenous Malformations/therapy , Intracranial Hemorrhage, Hypertensive/chemically induced , Adult , Embolization, Therapeutic/statistics & numerical data , Female , Humans , Intracranial Arteriovenous Malformations/epidemiology , Intracranial Hemorrhage, Hypertensive/epidemiology , Intracranial Hemorrhage, Hypertensive/physiopathology , Male , Middle Aged , Multivariate Analysis , Prospective Studies , Retrospective Studies
14.
Pediatr Neurosurg ; 47(1): 51-9, 2011.
Article in English | MEDLINE | ID: mdl-21921669

ABSTRACT

BACKGROUND/AIMS: The majority of pediatric patients with cerebellar neoplasms harbor pilocytic astrocytomas (PAs), medulloblastomas, or ependymomas. Knowledge of a preoperative likelihood of histopathology in this group of patients has the potential to influence many aspects of care. Previous studies have demonstrated hyperintensity on diffusion-weighted imaging to correlate with medulloblastomas. Recently, measurement of T(2)-weighted signal intensity (T2SI) was shown to be useful in identification of low-grade cerebellar neoplasms. The goal of this study was to assess whether objective findings on these MRI sequences reliably correlated with the underlying histopathology. METHODS: We reviewed the radiologic findings of 50 pediatric patients who underwent resection of a cerebellar neoplasm since 2003 at our institution. Region of interest placement was used to calculate the relative diffusion-weighted signal intensity (rDWSI) and relative T2SI (rT2SI) of each neoplasm. RESULTS: Tukey's multiple comparison test demonstrated medulloblastomas to have significantly higher rDWSIs than PAs/ependymomas, and PAs to have significantly higher rT2SIs than medulloblastomas/ependymomas. A simple method consisting of sequential measurement of rDWSI and rT2SI to predict histopathology was then constructed. Using this method, 39 of 50 (78%) tumors were accurately predicted. CONCLUSION: Measurement of rDWSI and rT2SI using standard MRI of the brain can be used to predict histopathology with favorable accuracy in pediatric patients with cerebellar tumors.


Subject(s)
Cerebellar Neoplasms/pathology , Diffusion Magnetic Resonance Imaging , Ependymoma/pathology , Medulloblastoma/pathology , Preoperative Care/methods , Cerebellar Neoplasms/diagnosis , Child , Diffusion Magnetic Resonance Imaging/standards , Ependymoma/diagnosis , Humans , Medulloblastoma/diagnosis , Predictive Value of Tests , Preoperative Care/standards , Retrospective Studies
15.
Surg Neurol Int ; 2: 66, 2011.
Article in English | MEDLINE | ID: mdl-21697981

ABSTRACT

BACKGROUND: Inpatient hospitalization following trans-sphenoidal resection of a pituitary neoplasm has traditionally involved a hospital stay of 2 days or more. It has been the policy of the senior pituitary neurosurgeon (GSA) since February 2008 to allow discharge home on postoperative day (POD) 1 if thirst mechanism is intact and the patient is tolerating oral hydration. The goal of this study was to evaluate the safety and cost-effectiveness of this practice. METHODS: We reviewed the charts of 30 patients, designated the early discharge group, who consecutively underwent microscopic trans-sphenoidal resection from February 2008 to December 2009. We then reviewed the charts of 30 patients, designated the standard discharge group, who consecutively underwent trans-sphenoidal resection from May 2007 to February 2008 before discharge home on POD1 was considered an appropriate option. Safety and cost-effectiveness of the two patient groups were retrospectively evaluated. RESULTS: Patients in the early discharge group went home, on average, on POD 1.3. Following exclusion of two outliers, the average date of discharge of patients in the standard discharge group was POD 2.2. The policy of early discharge saved an average of $1,949 per patient-approximately 4% the total cost of the procedure. Trends toward decreased costs did not reach statistical significance. While no patient suffered any measurable morbidity as a result of early discharge home, 1 in 3 patients in the early discharge group required unscheduled postoperative re-evaluation-a figure significantly higher than the standard discharge group. CONCLUSIONS: At a dedicated pituitary center with the resources to closely monitor outpatient endocrinological and postsurgical issues, early discharge home following trans-sphenoidal surgery is a safe option that is associated with an increase in the number of unscheduled postoperative visits and a trend toward lower costs.

16.
Neurosurgery ; 66(1): 137-42; discussion 142-3, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20023544

ABSTRACT

OBJECTIVE: Quantifying vasospasm has traditionally been performed manually, a method prone to imprecision and user bias. An alternative approach is to use computerized image analysis techniques to define and quantify the diameter of a vessel. The goal of this article is to demonstrate a novel automated vessel measurement algorithm specific to the needs of vasospasm studies and to compare it with traditional manual measurements in an animal model of vasospasm. METHODS: A total of 576 arterial diameter measurements were collected by 4 independent, blinded examiners from 24 angiograms in a rabbit subarachnoid hemorrhage (SAH) model. Measurements were taken from 3 segments of the basilar artery in anteroposterior and lateral projections, both before SAH and after SAH-induced vasospasm. Means and standard deviations of 288 manual measurements were compared with 288 automated measurements. RESULTS: The precision of automated measurements was significantly improved compared with standardized manual measurements (85.7% decrease in variation; P < .001). When using automated measurements, the precision was not affected by vessel size, but when using manual measurements, smaller arteries were less precise (P = .04). There was no significant difference in precision between 2 different contrast concentrations (P = .32). CONCLUSION: Automated measurements of basilar artery diameters are more precise than manual measurements, both before and after SAH-induced vasospasm. The variability in the manual group worsens when the artery is smaller secondary to vasospasm, indicating a need for the use of this segmentation method.


Subject(s)
Algorithms , Basilar Artery/pathology , Electronic Data Processing/methods , Vasospasm, Intracranial/pathology , Animals , Contrast Media , Diagnostic Imaging/methods , Disease Models, Animal , Rabbits , Subarachnoid Hemorrhage/complications , Vasospasm, Intracranial/etiology
17.
J Neurosurg ; 110(5): 975-80, 2009 May.
Article in English | MEDLINE | ID: mdl-19231927

ABSTRACT

OBJECT: Brain mapping aims to localize neurological function to specific regions of the human brain. Preoperative endovascular brain mapping (PEBM) is a novel approach that allows clear visualization of nonfunctional (silent) brain parenchyma in real time during a resection. It has potential to improve neurosurgical guidance because brain shift does not alter the maps, and the map is visualized directly on the brain in situ rather than on a nearby image. Therefore, the risk of a new neurological deficit should be reduced. The authors report the first PEBM approach that combines selective molecular targeting of brain endothelium with multispectral (optical) imaging in preclinical animal models. METHODS: Sprague-Dawley rats and New Zealand white rabbits were selectively catheterized, and a fluorescein isothiocyanate-derivatized tomato lectin-based imaging probe was administered into the carotid artery or posterior cerebral artery, measuring < 500 microm in diameter. After binding/uptake of the imaging probe, and removal of unbound probe, a craniotomy was performed to directly visualize the "brain map." RESULTS: Selective localization of the imaging probe to the right hemisphere in rats or right posterior cerebral artery in rabbits was clearly visualized after craniotomy. Cross-sections of stained capillaries demonstrated that the imaging probe did not cause vascular occlusion. Gross regional selectivity of the imaging probe was documented by multispectral molecular imaging of intact brains, with discrete localization and endothelium-directed targeting validated by histological examination. CONCLUSIONS: The authors have demonstrated the first molecular endothelium-targeted approach to PEBM that does not require manipulation of the intact blood-brain barrier or result in vascular occlusion. Furthermore, the presented multispectral molecular imaging technique appears to be a suitable methodology for the generation of region-selective brain maps of vascularized brain parenchyma. Further refinement of the PEBM approach, as well as the development of improved imaging probes, may result in clinical advancement of PEBM where direct visual discrimination of nonfunctional silent brain parenchyma at the time of resection could significantly improve neurosurgical outcomes.


Subject(s)
Brain Mapping/methods , Endothelium, Vascular/physiology , Animals , Fluorescein-5-isothiocyanate , Preoperative Care , Protein Transport , Rabbits , Rats , Rats, Sprague-Dawley
18.
J Pharmacol Exp Ther ; 317(3): 1012-8, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16537797

ABSTRACT

A major functional component of the blood-brain barrier is P-glycoprotein. In principle, inhibition of this efflux transporter would permit greater distribution of its substrates into the brain and increased central effects. Tariquidar and elacridar, potent and selective P-glycoprotein inhibitors, were investigated in this regard using the opioid loperamide as an in vivo probe in mice. Pretreatment with both inhibitors converted intravenous loperamide from a drug without central effects to one producing antinociception. Radiolabeled loperamide tissue distribution studies indicated that inhibition was associated with increased uptake into brain and testes in the absence of changes in plasma levels, along with enhanced efflux of rhodamine 123 from CD3e+ T-lymphocytes. However, with tariquidar, the loperamide dose-response curves for testes/plasma and brain/plasma concentration ratios were shifted 6- (p = 0.07) and 25-fold (p < 0.01) to the right, respectively (ED50 = 1.48 and 5.65 mg/kg), compared with the rhodamine 123 efflux curve (ED50 0.25 mg/kg). Less pronounced shifts were noted with elacridar where the brain/plasma ratio was shifted only 2-fold relative to the rhodamine 123 efflux data (ED50 = 2.36 versus 1.34 mg/kg, respectively; p 0.01). These results indicate that the P-glycoprotein localized in the blood-brain barrier and, to a lesser extent, the testes-blood barrier is more resistant to inhibition than at other tissue sites such as the lymphocyte; moreover, the extent of this effect depends on the inhibitor. Such resistance can be overcome by a sufficiently high dose of an inhibitor; however, whether this is safely attainable in the clinical situation remains to be determined.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Analgesics/pharmacology , Blood-Brain Barrier/metabolism , Loperamide/pharmacology , Quinolines/pharmacology , T-Lymphocytes/metabolism , Testis/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Acridines/pharmacokinetics , Acridines/pharmacology , Analgesics/pharmacokinetics , Animals , Blood-Brain Barrier/drug effects , Dose-Response Relationship, Drug , Loperamide/pharmacokinetics , Male , Mice , Mice, Inbred Strains , Mice, Knockout , Pain/drug therapy , Quinolines/pharmacokinetics , T-Lymphocytes/drug effects , Testis/drug effects , Tetrahydroisoquinolines/pharmacokinetics , Tetrahydroisoquinolines/pharmacology , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...