Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
ACS Synth Biol ; 10(12): 3264-3277, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34851109

ABSTRACT

Agricultural productivity relies on synthetic nitrogen fertilizers, yet half of that reactive nitrogen is lost to the environment. There is an urgent need for alternative nitrogen solutions to reduce the water pollution, ozone depletion, atmospheric particulate formation, and global greenhouse gas emissions associated with synthetic nitrogen fertilizer use. One such solution is biological nitrogen fixation (BNF), a component of the complex natural nitrogen cycle. BNF application to commercial agriculture is currently limited by fertilizer use and plant type. This paper describes the identification, development, and deployment of the first microbial product optimized using synthetic biology tools to enable BNF for corn (Zea mays) in fertilized fields, demonstrating the successful, safe commercialization of root-associated diazotrophs and realizing the potential of BNF to replace and reduce synthetic nitrogen fertilizer use in production agriculture. Derived from a wild nitrogen-fixing microbe isolated from agricultural soils, Klebsiella variicola 137-1036 ("Kv137-1036") retains the capacity of the parent strain to colonize corn roots while increasing nitrogen fixation activity 122-fold in nitrogen-rich environments. This technical milestone was then commercialized in less than half of the time of a traditional biological product, with robust biosafety evaluations and product formulations contributing to consumer confidence and ease of use. Tested in multi-year, multi-site field trial experiments throughout the U.S. Corn Belt, fields grown with Kv137-1036 exhibited both higher yields (0.35 ± 0.092 t/ha ± SE or 5.2 ± 1.4 bushels/acre ± SE) and reduced within-field yield variance by 25% in 2018 and 8% in 2019 compared to fields fertilized with synthetic nitrogen fertilizers alone. These results demonstrate the capacity of a broad-acre BNF product to fix nitrogen for corn in field conditions with reliable agronomic benefits.


Subject(s)
Edible Grain , Nitrogen Fixation , Agriculture , Crops, Agricultural , Edible Grain/chemistry , Fertilizers/analysis , Nitrogen
3.
J Exp Bot ; 71(15): 4591-4603, 2020 07 25.
Article in English | MEDLINE | ID: mdl-32267497

ABSTRACT

Plants depend upon beneficial interactions between roots and root-associated microorganisms for growth promotion, disease suppression, and nutrient availability. This includes the ability of free-living diazotrophic bacteria to supply nitrogen, an ecological role that has been long underappreciated in modern agriculture for efficient crop production systems. Long-term ecological studies in legume-rhizobia interactions have shown that elevated nitrogen inputs can lead to the evolution of less cooperative nitrogen-fixing mutualists. Here we describe how reprogramming the genetic regulation of nitrogen fixation and assimilation in a novel root-associated diazotroph can restore ammonium production in the presence of exogenous nitrogen inputs. We isolated a strain of the plant-associated proteobacterium Kosakonia sacchari from corn roots, characterized its nitrogen regulatory network, and targeted key nodes for gene editing to optimize nitrogen fixation in corn. While the wild-type strain exhibits repression of nitrogen fixation in conditions replete with bioavailable nitrogen, such as fertilized greenhouse and field experiments, remodeled strains show elevated levels in the rhizosphere of corn in the greenhouse and field even in the presence of exogenous nitrogen. Such strains could be used in commercial applications to supply fixed nitrogen to cereal crops.


Subject(s)
Nitrogen Fixation , Nitrogenase , Enterobacteriaceae/metabolism , Nitrogen , Nitrogenase/metabolism , Zea mays/metabolism
4.
Appl Environ Microbiol ; 73(19): 6277-83, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17693564

ABSTRACT

We have developed a novel method to clone terpene synthase genes. This method relies on the inherent toxicity of the prenyl diphosphate precursors to terpenes, which resulted in a reduced-growth phenotype. When these precursors were consumed by a terpene synthase, normal growth was restored. We have demonstrated that this method is capable of enriching a population of engineered Escherichia coli for those clones that express the sesquiterpene-producing amorphadiene synthase. In addition, we enriched a library of genomic DNA from the isoprene-producing bacterium Bacillus subtilis strain 6,051 in E. coli engineered to produce elevated levels of isopentenyl diphosphate and dimethylallyl diphosphate. The selection resulted in the discovery of two genes (yhfR and nudF) whose protein products acted directly on the prenyl diphosphate precursors and produced isopentenol. Expression of nudF in E. coli engineered with the mevalonate-based isopentenyl pyrophosphate biosynthetic pathway resulted in the production of isopentenol.


Subject(s)
Alkyl and Aryl Transferases/genetics , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Butadienes/toxicity , Genetic Engineering , Hemiterpenes/toxicity , Pentanes/toxicity , Pentanols/metabolism , Terpenes/metabolism , Alkyl and Aryl Transferases/metabolism , Butadienes/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Genes, Bacterial , Hemiterpenes/metabolism , Mevalonic Acid/metabolism , Organophosphorus Compounds/metabolism , Pentanes/metabolism
5.
Cytobios ; 86(344): 17-22, 1996.
Article in English | MEDLINE | ID: mdl-8952056

ABSTRACT

Induction of micronuclei in five different species of fish from polluted sewage water and in fish exposed to heavy metals was investigated. The frequency of micronuclei was statistically significant in both the groups and among the five species tested, Lepidocephalus was found to be highly sensitive.


Subject(s)
Fishes , Metals, Heavy/toxicity , Micronucleus Tests/methods , Sewage , Water Pollution , Animals , Cell Nucleus , Chromium/toxicity , Erythrocytes , India , Zinc/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...