Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters










Publication year range
1.
J Lipid Res ; 65(7): 100574, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38857781

ABSTRACT

Bis(monoacylglycerol)phosphate (BMP) is an acidic glycerophospholipid localized to late endosomes and lysosomes. However, the metabolism of BMP is poorly understood. Because many drugs that cause phospholipidosis inhibit lysosomal phospholipase A2 (LPLA2, PLA2G15, LYPLA3) activity, we investigated whether this enzyme has a role in BMPcatabolism. The incubation of recombinant human LPLA2 (hLPLA2) and liposomes containing the naturally occurring BMP (sn-(2-oleoyl-3-hydroxy)-glycerol-1-phospho-sn-1'-(2'-oleoyl-3'-hydroxy)-glycerol (S,S-(2,2',C18:1)-BMP) resulted in the deacylation of this BMP isomer. The deacylation rate was 70 times lower than that of dioleoyl phosphatidylglycerol (DOPG), an isomer and precursor of BMP. The release rates of oleic acid from DOPG and four BMP stereoisomers by LPLA2 differed. The rank order of the rates of hydrolysis were DOPG>S,S-(3,3',C18:1)-BMP>R,S-(3,1',C18:1)-BMP>R,R-(1,1',C18:1)>S,S-(2,2')-BMP. The cationic amphiphilic drug amiodarone (AMD) inhibited the deacylation of DOPG and BMP isomers by hLPLA2 in a concentration-dependent manner. Under these experimental conditions, the IC50s of amiodarone-induced inhibition of the four BMP isomers and DOPG were less than 20 µM and approximately 30 µM, respectively. BMP accumulation was observed in AMD-treated RAW 264.7 cells. The accumulated BMP was significantly reduced by exogenous treatment of cells with active recombinant hLPLA2 but not with diisopropylfluorophosphate-inactivated recombinant hLPLA2. Finally, a series of cationic amphiphilic drugs known to cause phospholipidosis were screened for inhibition of LPLA2 activity as measured by either the transacylation or fatty acid hydrolysis of BMP or phosphatidylcholine as substrates. Fifteen compounds demonstrated significant inhibition with IC50s ranging from 6.8 to 63.3 µM. These results indicate that LPLA2 degrades BMP isomers with different substrate specificities under acidic conditions and may be the key enzyme associated with BMP accumulation in drug-induced phospholipidosis.

2.
bioRxiv ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37986778

ABSTRACT

Cold exposure is an environmental stress that elicits a rapid metabolic shift in endotherms and is required for survival. The liver provides metabolic flexibility through its ability to rewire lipid metabolism to respond to an increased demand in energy for thermogenesis. We leveraged cold exposure to identify novel lipids contributing to energy homeostasis and found that lysosomal bis(monoacylglycero)phosphate (BMP) lipids were significantly increased in the liver during acute cold exposure. BMP lipid changes occurred independently of lysosomal abundance but were dependent on the lysosomal transcriptional regulator transcription factor EB (TFEB). Knockdown of TFEB in hepatocytes decreased BMP lipid levels. Through molecular biology and biochemical assays, we found that TFEB regulates lipid catabolism during cold exposure and that TFEB knockdown mice were cold intolerant. To identify how TFEB regulates BMP lipid levels, we used a combinatorial approach to identify TFEB target Pla2g15 , a lysosomal phospholipase, as capable of degrading BMP lipids in in vitro liposome assays. Knockdown of Pla2g15 in hepatocytes led to a decrease in BMP lipid species. Together, our studies uncover a required role of TFEB in mediating lipid liver remodeling during cold exposure and identified Pla2g15 as an enzyme that regulates BMP lipid catabolism.

3.
Gastroenterology ; 165(5): 1136-1150, 2023 11.
Article in English | MEDLINE | ID: mdl-37541526

ABSTRACT

BACKGROUND & AIMS: Cancers of the alimentary tract, including esophageal adenocarcinomas, colorectal cancers, and cancers of the gastric cardia, are common comorbidities of obesity. Prolonged, excessive delivery of macronutrients to the cells lining the gut can increase one's risk for these cancers by inducing imbalances in the rate of intestinal stem cell proliferation vs differentiation, which can produce polyps and other aberrant growths. We investigated whether ceramides, which are sphingolipids that serve as a signal of nutritional excess, alter stem cell behaviors to influence cancer risk. METHODS: We profiled sphingolipids and sphingolipid-synthesizing enzymes in human adenomas and tumors. Thereafter, we manipulated expression of sphingolipid-producing enzymes, including serine palmitoyltransferase (SPT), in intestinal progenitors of mice, cultured organoids, and Drosophila to discern whether sphingolipids altered stem cell proliferation and metabolism. RESULTS: SPT, which diverts dietary fatty acids and amino acids into the biosynthetic pathway that produces ceramides and other sphingolipids, is a critical modulator of intestinal stem cell homeostasis. SPT and other enzymes in the sphingolipid biosynthesis pathway are up-regulated in human intestinal adenomas. They produce ceramides, which serve as prostemness signals that stimulate peroxisome-proliferator activated receptor-α and induce fatty acid binding protein-1. These actions lead to increased lipid utilization and enhanced proliferation of intestinal progenitors. CONCLUSIONS: Ceramides serve as critical links between dietary macronutrients, epithelial regeneration, and cancer risk.


Subject(s)
Adenoma , Ceramides , Humans , Animals , Mice , Ceramides/metabolism , Fatty Acids , Sphingolipids/metabolism , Serine C-Palmitoyltransferase/metabolism
4.
J Am Soc Nephrol ; 34(3): 363-365, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36857497
5.
Am J Physiol Renal Physiol ; 324(4): F404-F422, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36794754

ABSTRACT

Polycystic kidney disease is a disorder of renal epithelial growth and differentiation. Transcription factor EB (TFEB), a master regulator of lysosome biogenesis and function, was studied for a potential role in this disorder. Nuclear translocation and functional responses to TFEB activation were studied in three murine models of renal cystic disease, including knockouts of folliculin, folliculin interacting proteins 1 and 2, and polycystin-1 (Pkd1) as well as in mouse embryonic fibroblasts lacking Pkd1 and three-dimensional cultures of Madin-Darby canine kidney cells. Nuclear translocation of Tfeb characterized cystic but not noncystic renal tubular epithelia in all three murine models as both an early and sustained response to cyst formation. Epithelia expressed elevated levels of Tfeb-dependent gene products, including cathepsin B and glycoprotein nonmetastatic melanoma protein B. Nuclear Tfeb translocation was observed in mouse embryonic fibroblasts lacking Pkd1 but not wild-type fibroblasts. Pkd1 knockout fibroblasts were characterized by increased Tfeb-dependent transcripts, lysosomal biogenesis and repositioning, and increased autophagy. The growth of Madin-Darby canine kidney cell cysts was markedly increased following exposure to the TFEB agonist compound C1, and nuclear Tfeb translocation was observed in response to both forskolin and compound C1 treatment. Nuclear TFEB also characterized cystic epithelia but not noncystic tubular epithelia in human patients with autosomal dominant polycystic kidney disease. Noncanonical activation of TFEB is characteristic of cystic epithelia in multiple models of renal cystic disease including those associated with loss of Pkd1. Nuclear TFEB translocation is functionally active in these models and may be a component of a general pathway contributing to cystogenesis and growth.NEW & NOTEWORTHY Changes in epithelial cell metabolism are important in renal cyst development. The role of TFEB, a transcriptional regulator of lysosomal function, was explored in several models of renal cystic disease and human ADPKD tissue sections. Nuclear TFEB translocation was uniformly observed in cystic epithelia in each model of renal cystic disease examined. TFEB translocation was functionally active and associated with lysosomal biogenesis and perinuclear repositioning, increased TFEB-associated protein expression, and activation of autophagic flux. Compound C1, a TFEB agonist, promoted cyst growth in 3-D cultures of MDCK cells. Nuclear TFEB translocation is an underappreciated signaling pathway for cystogenesis that may represent a new paradigm for cystic kidney disease.


Subject(s)
Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Animals , Dogs , Humans , Mice , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cysts , Fibroblasts/metabolism , Madin Darby Canine Kidney Cells , Polycystic Kidney Diseases/metabolism , Polycystic Kidney, Autosomal Dominant/metabolism , TRPP Cation Channels/genetics
6.
Methods Mol Biol ; 2613: 271-288, 2023.
Article in English | MEDLINE | ID: mdl-36587085

ABSTRACT

Glucosylceramide synthase can be targeted by high affinity small molecular weight inhibitors for the study of glycosphingolipid metabolism and function or for the treatment of glycosphingolipid storage disorders, including Gaucher and Fabry disease. This work is exemplified by the discovery and development of eliglustat tartrate, the first stand-alone small chemical entity approved for the treatment of Gaucher disease type 1. The development of inhibitors of glucosylceramide synthase that have utility for either research or clinical purposes begins with a testing funnel for screening candidate inhibitors for activity against this enzyme and for activity in lowering the content of glucosylceramide in intact cells. Two common assays for glucosylceramide synthase, one enzyme based and another cell based, are the focus of this chapter.


Subject(s)
Gaucher Disease , Humans , Gaucher Disease/drug therapy , Gaucher Disease/metabolism , Glucosyltransferases/metabolism , Glucosylceramides , Glycosphingolipids , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use
7.
J Lipid Res ; 62: 100089, 2021.
Article in English | MEDLINE | ID: mdl-34087196

ABSTRACT

Phospholipidosis, the excessive accumulation of phospholipids within lysosomes, is a pathological response observed following exposure to many drugs across multiple therapeutic groups. A clear mechanistic understanding of the causes and implications of this form of drug toxicity has remained elusive. We previously reported the discovery and characterization of a lysosome-specific phospholipase A2 (PLA2G15) and later reported that amiodarone, a known cause of drug-induced phospholipidosis, inhibits this enzyme. Here, we assayed a library of 163 drugs for inhibition of PLA2G15 to determine whether this phospholipase was the cellular target for therapeutics other than amiodarone that cause phospholipidosis. We observed that 144 compounds inhibited PLA2G15 activity. Thirty-six compounds not previously reported to cause phospholipidosis inhibited PLA2G15 with IC50 values less than 1 mM and were confirmed to cause phospholipidosis in an in vitro assay. Within this group, fosinopril was the most potent inhibitor (IC50 0.18 µM). Additional characterization of the inhibition of PLA2G15 by fosinopril was consistent with interference of PLA2G15 binding to liposomes. PLA2G15 inhibition was more accurate in predicting phospholipidosis compared with in silico models based on pKa and ClogP, measures of protonation, and transport-independent distribution in the lysosome, respectively. In summary, PLA2G15 is a primary target for cationic amphiphilic drugs that cause phospholipidosis, and PLA2G15 inhibition by cationic amphiphilic compounds provides a potentially robust screening platform for potential toxicity during drug development.


Subject(s)
Enzyme Inhibitors/pharmacology , Phospholipases A2/metabolism , Phospholipids/metabolism , Animals , Enzyme Inhibitors/chemistry , Humans , Lysosomes/enzymology , Phospholipases A2/genetics
8.
ACS Chem Neurosci ; 11(20): 3464-3473, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33035424

ABSTRACT

There remain no approved therapies for rare but devastating neuronopathic glyocosphingolipid storage diseases, such as Sandhoff, Tay-Sachs, and Gaucher disease type 3. We previously reported initial optimization of the scaffold of eliglustat, an approved therapy for the peripheral symptoms of Gaucher disease type 1, to afford 2, which effected modest reductions in brain glucosylceramide (GlcCer) in normal mice at 60 mg/kg. The relatively poor pharmacokinetic properties and high Pgp-mediated efflux of 2 prompted further optimization of the scaffold. With a general objective of reducing topological polar surface area, and guided by multiple metabolite identification studies, we were successful at identifying 17 (CCG-222628), which achieves remarkably greater brain exposure in mice than 2. After demonstrating an over 60-fold improvement in potency over 2 at reducing brain GlcCer in normal mice, we compared 17 with Sanofi clinical candidate venglustat (Genz-682452) in the CBE mouse model of Gaucher disease type 3. At doses of 10 mg/kg, 17 and venglustat effected comparable reductions in both brain GlcCer and glucosylsphingosine. Importantly, 17 achieved these equivalent pharmacodynamic effects at significantly lower brain exposure than venglustat.


Subject(s)
Gaucher Disease , Animals , Enzyme Inhibitors/pharmacology , Gaucher Disease/drug therapy , Glucosyltransferases , Mice , Pyrrolidines/pharmacology
9.
PLoS One ; 14(5): e0217214, 2019.
Article in English | MEDLINE | ID: mdl-31120949

ABSTRACT

Fabry disease is caused by loss of activity of the lysosomal hydrolase α-galactosidase A (GLA). Premature life-threatening complications in Fabry patients arise from cardiovascular disease, including stroke and myocardial infarction. Exercise training has been shown to improve endothelial dysfunction in various settings including coronary artery disease. However, the effects of exercise training on endothelial dysfunction in Fabry disease have not been investigated. Gla knockout mice were single-housed in a cage equipped with a voluntary wheel (EX) or no wheel (SED) for 12 weeks. Exercised mice ran 10 km/day on average during the voluntary running intervention (VR) period. Despite significantly higher food intake in EX than SED, body weights of EX and SED remained stable during the VR period. After the completion of VR, citrate synthase activity in gastrocnemius muscle was significantly higher in EX than SED. VR resulted in greater phosphorylation of Akt (S473) and AMPK (T172) in the aorta of EX compared to SED measured by western blot. Furthermore, VR significantly enhanced eNOS protein expression and phosphorylation at S1177 by 20% and 50% in the aorta of EX when compared with SED. Similarly, plasma nitrate and nitrite levels were 77% higher in EX than SED. In contrast, measures of anti- and pro-oxidative enzymes (superoxide dismutase and p67phox subunit of NADPH oxidase) and overall oxidative stress (plasma oxidized glutathione) were not different between groups. Although the aortic endothelial relaxation to acetylcholine was slightly increased in EX, it did not reach statistical significance. This study provides the first evidence that VR improves Akt/AMPK/eNOS signaling cascades, but not endothelial function in the aorta of aged Gla deficient mice.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Endothelium, Vascular/pathology , Nitric Oxide Synthase Type III/metabolism , Physical Conditioning, Animal , Proto-Oncogene Proteins c-akt/metabolism , Vascular Diseases/pathology , alpha-Galactosidase/physiology , AMP-Activated Protein Kinases/genetics , Animals , Endothelium, Vascular/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity , Nitric Oxide Synthase Type III/genetics , Oxidative Stress , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Running/physiology , Signal Transduction , Vascular Diseases/metabolism
10.
Biochemistry ; 58(13): 1709-1717, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30830753

ABSTRACT

Lysosomal phospholipase A2 (LPLA2/PLA2G15) is a key enzyme involved in lipid homeostasis and is characterized by both phospholipase A2 and transacylase activity and by an acidic pH optimum. Divalent cations such as Ca2+ and Mg2+ have previously been shown to have little effect on the activity of LPLA2, but the discovery of a novel crystal form of LPLA2 with Zn2+ bound in the active site suggested a role for this divalent cation in regulating enzyme activity. In this complex, the cation directly coordinates the serine and histidine of the α/ß-hydrolase triad and stabilizes a closed conformation. This closed conformation is characterized by an inward shift of the lid loop, which extends over the active site and effectively blocks access to one of its lipid acyl chain binding tracks. Therefore, we hypothesized that Zn2+ would inhibit LPLA2 activity at a neutral but not acidic pH because histidine would be positively charged at lower pH. Indeed, Zn2+ was found to inhibit the esterase activity of LPLA2 in a noncompetitive manner exclusively at a neutral pH (between 6.5 and 8.0). Because lysosomes are reservoirs of Zn2+ in cells, the pH optimum of LPLA2 might allow it to catalyze acyl transfer unimpeded within the organelle. We conjecture that Zn2+ inhibition of LPLA2 at higher pH maintains a lower activity of the esterase in environments where its activity is not typically required.


Subject(s)
Acyltransferases/metabolism , Lysosomes/enzymology , Phospholipases A2/metabolism , Zinc/metabolism , Acyltransferases/chemistry , Animals , Binding Sites , Catalytic Domain , Enzyme Stability , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Lysosomes/metabolism , Mice , Molecular Docking Simulation , Phospholipases A2/chemistry , Protein Binding , Protein Conformation
11.
Kidney Int ; 95(1): 149-159, 2019 01.
Article in English | MEDLINE | ID: mdl-30470436

ABSTRACT

Fabry disease results from loss of activity of the lysosomal enzyme α-galactosidase A (GLA), leading to the accumulation of globoseries glycosphingolipids in vascular endothelial cells. Thrombosis and stroke are life-threatening complications of Fabry disease; however, the mechanism of the vasculopathy remains unclear. We explored the relationship between GLA deficiency and endothelial cell von Willebrand factor (VWF) secretion in in vivo and in vitro models of Fabry disease. Plasma VWF was significantly higher at two months and increased with age in Gla-null compared to wild-type mice. Disruption of GLA in a human endothelial cell line by siRNA and CRISPR/Cas9 resulted in a 3-fold and 5-fold increase in VWF secretion, respectively. The increase in VWF levels was associated with decreased endothelial nitric oxide synthase (eNOS) activity in both in vitro models. Pharmacological approaches that increase nitric oxide bioavailability or decrease reactive oxygen species completely normalized the elevated VWF secretion in GLA deficient cells. In contrast, the abnormality was not readily reversed by recombinant human GLA or by inhibition of glycosphingolipid synthesis with eliglustat. These results suggest that GLA deficiency promotes VWF secretion through eNOS dysregulation, which may contribute to the vasculopathy of Fabry disease.


Subject(s)
Fabry Disease/pathology , alpha-Galactosidase/metabolism , von Willebrand Factor/metabolism , Animals , Cell Line , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/pathology , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Fabry Disease/genetics , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/metabolism , Glycosphingolipids/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Pyrrolidines/pharmacology , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism , alpha-Galactosidase/genetics
12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(6): 932-940, 2019 06.
Article in English | MEDLINE | ID: mdl-30077006

ABSTRACT

Lysosomal phospholipase A2 (PLA2G15) is a ubiquitous enzyme uniquely characterized by a subcellular localization to the lysosome and late endosome. PLA2G15 has an acidic pH optimum, is calcium independent, and acts as a transacylase in the presence of N-acetyl-sphingosine as an acceptor. Recent studies aided by the delineation of the crystal structure of PLA2G15 have clarified further the catalytic mechanism, sn-1 versus sn-2 specificity, and the basis whereby cationic amphiphilic drugs inhibit its activity. PLA2G15 has recently been shown to hydrolyze short chain oxidized phospholipids which access the catalytic site directly based on their aqueous solubility. Studies on the PLA2G15 null mouse suggest a role for the enzyme in the catabolism of pulmonary surfactant. PLA2G15 may also have a role in host defense and in the processing of lipid antigens for presentation by CD1 proteins. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.


Subject(s)
Lysosomes/metabolism , Phospholipases A2/metabolism , Animals , Humans , Hydrolysis , Oxidation-Reduction , Phospholipids/metabolism
13.
Mol Genet Metab ; 125(4): 338-344, 2018 12.
Article in English | MEDLINE | ID: mdl-30413389

ABSTRACT

Fabry disease, a rare, X-linked lysosomal storage disease, arises from deficiency of the lysosomal hydrolase, α-galactosidase A (GLA) which disrupts the catabolism of globo- series glycosphingolipids (GSLs). One potential link between GLA deficiency and vascular dysfunction may be changes in endothelial nitric oxide synthase (eNOS) function. GLA-deficient EA.hy926 cells were obtained by siRNA knockdown of GLA expression and by mutation of GLA with CRISPR/Cas9 gene editing to investigate the effects of GLA deficiency on eNOS. As previously observed with siRNA knockdown of GLA, globotriaosylceramide (Gb3) accumulated in EA.hy926 cells. In contrast, Gb3 did not accumulate in CRISPR/Cas9 gene edited GLA-deficient cells, but instead, globotetraosylceramide (Gb4). However, in both the siRNA and CRISPR/Cas9 models globotriaosylsphingosine (lyso-Gb3) was elevated. As was previously observed with siRNA knockdown of GLA expression, CRISPR/Cas9 GLA-deficient cells had lower eNOS activity. Restoring GLA activity in GLA-deficient cells with exogenous GLA treatment improved eNOS activity. In contrast, treating cells with the glucosylceramide synthase inhibitor, eliglustat, decreased NOS activity. These results suggest that eNOS uncoupling is due to GLA deficiency, and not necessarily due to elevated Gb3 per se. It was observed that lyso-Gb3 inhibits eNOS activity.


Subject(s)
Endothelium, Vascular/pathology , Gene Expression Regulation, Enzymologic , Gene Silencing , Nitric Oxide Synthase Type III/metabolism , Trihexosylceramides/metabolism , alpha-Galactosidase/antagonists & inhibitors , Cells, Cultured , Endothelium, Vascular/enzymology , Humans , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism
14.
J Lipid Res ; 59(7): 1205-1218, 2018 07.
Article in English | MEDLINE | ID: mdl-29724779

ABSTRACT

Lysosomal phospholipase A2 (LPLA2) is characterized by broad substrate recognition, peak activity at acidic pH, and the transacylation of lipophilic alcohols, especially N-acetyl-sphingosine. Prior structural analysis of LPLA2 revealed the presence of an atypical acidic residue, Asp13, in the otherwise hydrophobic active site cleft. We hypothesized that Asp13 contributed to the pH profile and/or substrate preference of LPLA2 for unsaturated acyl chains. To test this hypothesis, we substituted Asp13 for alanine, cysteine, or phenylalanine; then, we monitored the formation of 1-O-acyl-N-acetylsphingosine to measure the hydrolysis of sn-1 versus sn-2 acyl groups on a variety of glycerophospholipids. Substitutions with Asp13 yielded significant enzyme activity at neutral pH (7.4) and perturbed the selectivity for mono- and double-unsaturated acyl chains. However, this position played no apparent role in selecting for either the acyl acceptor or the head group of the glycerophospholipid. Our modeling indicates that Asp13 and its substitutions contribute to the pH activity profile of LPLA2 and to acyl chain selectivity by forming part of a hydrophobic track occupied by the scissile acyl chain.


Subject(s)
Lysosomes/enzymology , Phospholipases A2/metabolism , Acylation , Humans , Hydrogen-Ion Concentration , Hydrolysis , Models, Molecular , Mutation , Phospholipases A2/chemistry , Phospholipases A2/genetics , Protein Structure, Tertiary , Substrate Specificity
15.
Semin Nephrol ; 38(2): 183-192, 2018 03.
Article in English | MEDLINE | ID: mdl-29602400

ABSTRACT

Sphingolipids, including ceramides, glycosphingolipids, sphingomyelin, and sphingosine-1-phosphate, have been recognized as important molecules that regulate critical cellular functions. Although originally studied in the context of lysosomal storage diseases, the roles of these compounds in more common disorders involving metabolism, vascular disease, and aberrant growth has been the focus of recent studies, including in disorders that affect the kidneys. These efforts have led to new insights into Fabry disease, a classic disorder of lysosomal function that results in renal failure as well as in more common renal diseases including diabetic nephropathy and polycystic kidney disease. Pathways for glycosphingolipid synthesis can be targeted with orally available small-molecule inhibitors, creating new opportunities for the treatment of both rare and common kidney diseases.


Subject(s)
Glucosylceramides/biosynthesis , Glucosyltransferases/antagonists & inhibitors , Kidney Diseases/drug therapy , Rare Diseases/drug therapy , Signal Transduction , Sphingolipids/metabolism , Animals , Diabetic Nephropathies/metabolism , Fabry Disease/metabolism , Humans , Kidney Diseases/metabolism , Polycystic Kidney Diseases/metabolism , Rare Diseases/metabolism
16.
Anal Biochem ; 549: 164-170, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29605449

ABSTRACT

Lysosomal phospholipase A2 (LPLA2) is a key enzyme involved in the homeostasis of cellular phospholipids. Recently, LPLA2 was reported to preferentially degrade some truncated oxidized phospholipids at the sn-1 position. A commercially available, truncated oxidized phospholipid conjugated with a fluorescent dye, 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphoethanolamine-N-[4-(dipyrrometheneboron difluoride) butanoyl] (PGPE-BODIPY), was used to develop a specific assay for this enzyme. When recombinant mouse LPLA2 was incubated with liposomes consisting of 1,2-O-octadecyl-sn-glycero-3-phosphocholine/PGPE-BODIPY under acidic conditions, PGPE-BODIPY was converted to palmitic acid and a polar BODIPY-product. After phase partitioning by chloroform/methanol, the polar BODIPY-product was recovered in the aqueous phase and identified as 1-lyso-PGPE-BODIPY. The formation of 1-lyso-PGPE-BODIPY was quantitatively determined by fluorescent measurements. The Km and Vmax values of the recombinant LPLA2 for PGPE-BODIPY were 5.64 µM and 20.7 µmol/min/mg protein, respectively. Detectable activity against PGPE-BODIPY was present in LPLA2 deficient mouse sera, but the deacylase activity was completely suppressed by treatment with 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF). AEBSF had no effect on LPLA2 activity. The LPLA2 activity of mouse serum pre-treated with AEBSF was specifically and quantitatively determined by this assay method. The PGPE-BODIPY and AEBSF based LPLA2 assay is convenient and can be used to measure LPLA2 activity in a variety of biological specimens.


Subject(s)
Boron Compounds/chemistry , Ethanolamines/chemistry , Fluorometry/methods , Lysosomes/enzymology , Phospholipases A2/analysis , Animals , Mice , Palmitic Acid/chemistry
17.
J Biol Chem ; 292(49): 20313-20327, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29030428

ABSTRACT

Lecithin:cholesterol acyltransferase (LCAT) plays a key role in reverse cholesterol transport by transferring an acyl group from phosphatidylcholine to cholesterol, promoting the maturation of high-density lipoproteins (HDL) from discoidal to spherical particles. LCAT is activated through an unknown mechanism by apolipoprotein A-I (apoA-I) and other mimetic peptides that form a belt around HDL. Here, we report the crystal structure of LCAT with an extended lid that blocks access to the active site, consistent with an inactive conformation. Residues Thr-123 and Phe-382 in the catalytic domain form a latch-like interaction with hydrophobic residues in the lid. Because these residues are mutated in genetic disease, lid displacement was hypothesized to be an important feature of apoA-I activation. Functional studies of site-directed mutants revealed that loss of latch interactions or the entire lid enhanced activity against soluble ester substrates, and hydrogen-deuterium exchange (HDX) mass spectrometry revealed that the LCAT lid is extremely dynamic in solution. Upon addition of a covalent inhibitor that mimics one of the reaction intermediates, there is an overall decrease in HDX in the lid and adjacent regions of the protein, consistent with ordering. These data suggest a model wherein the active site of LCAT is shielded from soluble substrates by a dynamic lid until it interacts with HDL to allow transesterification to proceed.


Subject(s)
Apolipoprotein A-I/physiology , Phosphatidylcholine-Sterol O-Acyltransferase/chemistry , Catalytic Domain , Crystallography, X-Ray , Deuterium Exchange Measurement , Enzyme Activation , Humans , Lipoproteins, HDL/metabolism , Mutagenesis, Site-Directed , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Protein Conformation
18.
J Lipid Res ; 58(7): 1439-1452, 2017 07.
Article in English | MEDLINE | ID: mdl-28490444

ABSTRACT

Acute kidney injury (AKI), resulting from chemotherapeutic agents such as cisplatin, remains an obstacle in the treatment of cancer. Cisplatin-induced AKI involves apoptotic and necrotic cell death, pathways regulated by sphingolipids such as ceramide and glucosylceramide. Results from this study indicate that C57BL/6J mice treated with cisplatin had increased ceramide and hexosylceramide levels in the renal cortex 72 h following cisplatin treatment. Pretreatment of mice with inhibitors of acid sphingomyelinase and de novo ceramide synthesis (amitriptyline and myriocin, respectively) prevented accumulation of ceramides and hexosylceramide in the renal cortex and protected from cisplatin-induced AKI. To determine the role of ceramide metabolism to hexosylceramides in kidney injury, we treated mice with a potent and highly specific inhibitor of glucosylceramide synthase, the enzyme responsible for catalyzing the glycosylation of ceramides to form glucosylceramides. Inhibition of glucosylceramide synthase attenuated the accumulation of the hexosylceramides and exacerbated ceramide accumulation in the renal cortex following treatment of mice with cisplatin. Increasing ceramides and decreasing glucosylceramides in the renal cortex sensitized mice to cisplatin-induced AKI according to markers of kidney function, kidney injury, inflammation, cell stress, and apoptosis. Under conditions of high ceramide generation, data suggest that metabolism of ceramides to glucosylceramides buffers kidney ceramides and helps attenuate kidney injury.-Dupre, T. V., M. A. Doll, P. P. Shah, C. N. Sharp, D. Siow, J. Megyesi, J. Shayman, A. Bielawska, J. Bielawski, L. J. Beverly, M. Hernandez-Corbacho, C. J. Clarke, A. J. Snider, R. G. Schnellmann, L. M. Obeid, Y. A. Hannun, and L. J. Siskind. Inhibiting glucosylceramide synthase exacerbates cisplatin-induced acute kidney injury. J. Lipid Res 2017. 58: 1439-1452.


Subject(s)
Acute Kidney Injury/chemically induced , Cisplatin/adverse effects , Enzyme Inhibitors/pharmacology , Glucosyltransferases/antagonists & inhibitors , Acute Kidney Injury/metabolism , Acute Kidney Injury/physiopathology , Animals , Ceramides/metabolism , Kidney Cortex/blood supply , Kidney Cortex/drug effects , Kidney Cortex/metabolism , Male , Mice , Rats , Reperfusion Injury/metabolism
19.
Toxicology ; 386: 120-132, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28552552

ABSTRACT

Lipid dysregulation is a common hepatic adverse outcome after exposure to toxic drugs and chemicals. A donor-free rat hepatocyte-like (B-13/H) cell was therefore examined as an in vitro model for investigating mechanisms. The B-13/H cell irreversibly accumulated triglycerides (steatosis) in a time- and dose-dependent manner when exposed to fatty acids, an effect that was potentiated by the combined addition of hyperglycaemic levels of glucose and insulin. B-13/H cells also expressed the LXR nuclear receptors and exposure to their activators - T0901317 or GW3965 - induced luciferase expression from a transfected LXR-regulated reporter gene construct and steatosis in a dose-dependent manner with T0901317. Exposing B-13/H cells to a variety of cationic amphiphilic drugs - but not other hepatotoxins - also resulted in a time- and dose-dependent accumulation of phospholipids (phospholipidosis), an effect that was reduced by over-expression of lysosomal phospholipase A2. Through application of this model, hepatotoxin methapyrilene exposure was shown to induce phospholipidosis in both B-13 and B-13/H cells in a time- and dose-dependent manner. However, methapyrilene was only toxic to B-13/H cells and inhibitors of hepatotoxicity enhanced phospholipidosis, suggesting phospholipidosis is not a pathway in toxicity for this withdrawn drug. In contrast, pre-existing steatosis had minimal effect on methapyrilene hepatotoxicity in B-13/H cells. These data demonstrate that the donor free B-13 cell system for generating hepatocyte-like cells may be employed in studies of fatty acid- and LXR activator-induced steatosis and phospholipidosis and in the dissection of pathways leading to adverse outcomes such as hepatotoxicity.


Subject(s)
Chemical and Drug Induced Liver Injury/physiopathology , Fatty Acids/metabolism , Hepatocytes/drug effects , Lipid Metabolism/drug effects , Triglycerides/metabolism , Animals , Benzoates/administration & dosage , Benzoates/toxicity , Benzylamines/administration & dosage , Benzylamines/toxicity , Cell Line , Chemical and Drug Induced Liver Injury/etiology , Dose-Response Relationship, Drug , Fatty Liver/metabolism , Hepatocytes/metabolism , Hydrocarbons, Fluorinated/administration & dosage , Hydrocarbons, Fluorinated/toxicity , Liver X Receptors/metabolism , Methapyrilene/administration & dosage , Methapyrilene/toxicity , Phospholipids/metabolism , Rats , Sulfonamides/administration & dosage , Sulfonamides/toxicity , Time Factors
20.
Curr Eye Res ; 42(4): 611-616, 2017 04.
Article in English | MEDLINE | ID: mdl-27612621

ABSTRACT

PURPOSE: The goal of present study was to elucidate the pathophysiological roles of lysosomal phospholipase A2 (LPLA2) in intraocular pressure (IOP) levels and ocular inflammation. METHODS: C57BL/6 (wild-type) and LPLA2-deficient mice with C57BL/6 background were employed. The IOPs were compared between wild-type and LPLA2-deficient mice during their aging, after topical administration of antiglaucoma medications such as travoprost, dorzolamide, or timolol maleate, or after induction of endotoxin-induced uveitis (EIU) using lipopolysaccharide (LPS). Concerning the EIU, ocular inflammation was also evaluated by immunohistochemical analysis by the anti-glial fibrillary acidic protein (GFAP) antibody. RESULTS: The LPLA2-deficient mice showed higher IOP levels than the wild-type mice until 2 months of age (P = 1.60E-06); in older mice there was no difference between the two groups. Significant differences in the IOP changes between groups in young mice were seen after administration of 0.5% timolol (P < 0.05). Upon induction of EIU by LPS, compared with wild-type mice (P < 0.05), IOPs were significantly elevated in LPLA2-deficient mice at maximum levels of the ocular inflammation (48 h). Immunohistochemical analysis indicated that LPLA2-deficient mice showed more prolonged expression of GFAP at the inner plexiform layer and inner nuclear layer by EIU than that found in the wild-type mice (P < 0.05). CONCLUSIONS: These results confirm that LPLA2 plays a significant role in the control of IOP during mouse ocular development or with ocular inflammation by facilitating the digestion of intraocular insoluble materials.


Subject(s)
Disease Models, Animal , Intraocular Pressure/physiology , Lysosomes/enzymology , Phospholipases A2/physiology , Uveitis/enzymology , Animals , Antihypertensive Agents/pharmacology , Enzyme-Linked Immunosorbent Assay , Glial Fibrillary Acidic Protein/metabolism , Inflammation/chemically induced , Inflammation/enzymology , Intraocular Pressure/drug effects , Lipopolysaccharides/toxicity , Mice , Mice, Inbred C57BL , Mice, Knockout , Ophthalmic Solutions , Phospholipases A2/deficiency , Retina/metabolism , Uveitis/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...