Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Opt ; 21(10): 107002, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27762423

ABSTRACT

In the last decade, cutaneous carotenoid measurements have become increasingly popular, as carotenoids were found to be a biomarker of nutrition rich in fruits and vegetables, permitting monitoring of the influence of various stress factors. For such measurements, in addition to the specific and selective resonance Raman spectroscopy (RRS), newly developed low expensive small and mobile sensors that are based on spatially resolved reflectance spectroscopy (SRRS) are used for cutaneous carotenoid measurements. Human volunteers of different age exhibiting skin types I to III were investigated using RRS and two SRRS-based sensors to determine the influence of these parameters on the measuring results. In two studies on volunteers of either the same age or skin type, however, the respective other parameter being varied and no significant influences of age or skin type could be detected. Furthermore, the kinetic changes resulting from the intake and discontinued intake of a vegetable extract rich in carotenoids showed a good correlation among the three sensors and with the detected blood carotenoids. This illustrates that the SRRS-based sensors and RRS device provide reliable cutaneous carotenoid values independent of age and skin types I to III of the volunteers.


Subject(s)
Carotenoids/blood , Diet , Skin/chemistry , Spectrum Analysis, Raman , Vegetables , Adult , Aged , Biomarkers/blood , Biomarkers/chemistry , Carotenoids/administration & dosage , Carotenoids/analysis , Carotenoids/pharmacokinetics , Equipment Design , Female , Humans , Male , Middle Aged , Plant Extracts/administration & dosage , Plant Extracts/pharmacokinetics , Skin/blood supply , Spectrum Analysis, Raman/instrumentation , Spectrum Analysis, Raman/methods , Young Adult
2.
J Chem Phys ; 129(20): 204308, 2008 Nov 28.
Article in English | MEDLINE | ID: mdl-19045865

ABSTRACT

Strong-field excitation and energy redistribution dynamics of C(60) fullerenes are studied by means of time-resolved mass spectrometry in a two-color femtosecond pump-probe setup. Resonant pre-excitation of the electronic system via the first dipole-allowed HOMO-->LUMO+1(t(1g)) (HOMO denotes highest occupied molecular orbital and LUMO denotes lowest unoccupied molecular orbital) transition with ultrashort 25 fs pulses at 399 nm of some 10(12) W cm(-2) results in a highly nonequilibrium distribution of excited electrons and vibrational modes in the neutral species. The subsequent coupling among the electronic and nuclear degrees of freedom is monitored by probing the system with time-delayed 27 fs pulses at 797 nm of some 10(13) W cm(-2). Direct information on the characteristic relaxation time is derived from the analysis of transient singly and multiply charged parent and fragment ion signals as a function of pump-probe delay and laser pulse intensity. The observed relaxation times tau(el) approximately 60-400 fs are attributed to different microcanonical ensembles prepared in the pre-excitation process and correspond to different total energy contents and energy sharing between electronic and vibrational degrees. The characteristic differences and trends allow one to extract a consistent picture for the formation dynamics of ions in different charge states and their fullerenelike fragments and give evidence to collective effects in multiple ionization such as plasmon-enhanced energy deposition.

3.
J Chem Phys ; 125(19): 194320, 2006 Nov 21.
Article in English | MEDLINE | ID: mdl-17129116

ABSTRACT

The interaction of C60 fullerenes with 765-797 nm laser pulses as short as 9 fs at intensities of up to 3.7 x 10(14) W cm(-2) is investigated with photoion spectroscopy. The excitation time thus addressed lies well below the characteristic time scales for electron-electron and electron-phonon couplings. Thus, energy deposition into the system is separated from energy redistribution among the various electronic and nuclear degrees of freedom. Insight into fundamental photoinduced processes such as ionization and fragmentation is obtained from the analysis of the resulting mass spectra as a function of pulse duration, laser intensity, and time delay between pump and probe pulses, the latter revealing a memory effect for storing electronic energy in the system with a relaxation time of about 50 fs. Saturation intensities and relative abundances of (multiply charged) parent and fragment ions (C60(q+), q=1-6) are fingerprints for the ionization and fragmentation mechanisms. The observations indicate that for final charge states q>1 the well known C60 giant plasmon resonance is involved in creating ions and a significant amount of large fragments even with 9 fs pulses through a nonadiabatic multielectron dynamics. In contrast, for energetic reasons singly charged ions are generated by an essentially adiabatic single active electron mechanism and negligible fragmentation is found when 9 fs pulses are used. These findings promise to unravel a long standing puzzle in understanding C60 mass spectra generated by intense femtosecond laser pulses.

SELECTION OF CITATIONS
SEARCH DETAIL
...