Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Steroids ; 188: 109135, 2022 12.
Article in English | MEDLINE | ID: mdl-36336105

ABSTRACT

Synthesis of 21,22-cyclosteroids has been achieved starting from pregnenolone acetate. The key transformation was the Kulinkovich reaction of 17-vinyl steroids with esters. The resulting cyclopropanols were further subjected to three-membered ring-opening under various conditions including to base-, palladium or visible light-promoted isomerization and cross-coupling reaction. A number of steroidal Δ2-6-ketones and 3ß-hydroxy-Δ5-enes with functional groups at C-21 - C-23 have been synthesized via the 21,22-cyclosteroids. The antiproliferative and antihormonal activity of the obtained compounds on the cell lines of prostate (22Rv1) and breast (MCF-7) cancer was studied. The androgen receptor activity was assessed by reporter assay when the expression of signalling proteins was evaluated by immunoblotting. (20S,22R)-22-Acetoxy-21,22-cyclo-5α-cholest-5-ene with the moderate antiandrogenic potency revealed IC50 values of 18.4 ± 1.2 and 14.6 ± 1.4 µM against MCF-7 and 22Rv1 cells, respectively, and its effects on the expression of AR-V7, cyclin D1 and BCL2 were explored.


Subject(s)
Antineoplastic Agents , Cyclosteroids , Humans , Male , Cell Line, Tumor , Cell Proliferation , Cyclosteroids/chemistry , Cyclosteroids/pharmacology , Imidazoles , Pregnenolone , Receptors, Androgen/metabolism , Steroids , Breast Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
2.
Molecules ; 26(21)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34771077

ABSTRACT

Hormone therapy is one of the most effective breast cancer treatments, however, its application is limited by the progression of hormonal resistance, both primary or acquired. The development of hormonal resistance is caused either by an irreversible block of hormonal signalling (suppression of the activity or synthesis of hormone receptors), or by activation of oestrogen-independent signalling pathways. Recently the effect of exosome-mediated intercellular transfer of hormonal resistance was revealed, however, the molecular mechanism of this effect is still unknown. Here, the role of exosomal miRNAs (microRNAs) in the transferring of hormonal resistance in breast cancer cells has been studied. The methods used in the work include extraction, purification and RNAseq of miRNAs, transfection of miRNA mimetics, immunoblotting, reporter analysis and the MTT test. Using MCF7 breast cancer cells and MCF7/T tamoxifen-resistant sub-line, we have found that some miRNAs, suppressors of oestrogen receptor signalling, are overexpressed in the exosomes of the resistant breast cancer cells. The multiple (but not single) transfection of one of the identified miRNA, miR-181a-2, into oestrogen-dependent MCF7 cells induced the irreversible tamoxifen resistance associated with the continuous block of the oestrogen receptor signalling and the activation of PI3K/Akt pathway. We suppose that the miRNAs-ERα suppressors may act as trigger agents inducing the block of oestrogen receptor signalling and breast cancer cell transition to an aggressive oestrogen-independent state.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacology , Breast Neoplasms/drug therapy , Estrogen Receptor alpha/antagonists & inhibitors , Exosomes/drug effects , MicroRNAs/antagonists & inhibitors , Tamoxifen/pharmacology , Breast Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Exosomes/genetics , Exosomes/metabolism , Female , Humans , MCF-7 Cells , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction/drug effects
3.
Molecules ; 26(9)2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33922925

ABSTRACT

Exosomes are the small vesicles that are secreted by different types of normal and tumour cells and can incorporate and transfer their cargo to the recipient cells. The main goal of the present work was to study the tumour exosomes' ability to accumulate the parent mutant DNA or RNA transcripts with their following transfer to the surrounding cells. The experiments were performed on the MCF7 breast cancer cells that are characterized by the unique coding mutation in the PIK3CA gene. Using two independent methods, Sanger sequencing and allele-specific real-time PCR, we revealed the presence of the fragments of the mutant DNA and RNA transcripts in the exosomes secreted by the MCF7 cells. Furthermore, we demonstrated the MCF7 exosomes' ability to incorporate into the heterologous MDA-MB-231 breast cancer cells supporting the possible transferring of the exosomal cargo into the recipient cells. Sanger sequencing of the DNA from MDA-MB-231 cells (originally bearing a wild type of PIK3CA) treated with MCF7 exosomes showed no detectable amount of mutant DNA or RNA; however, using allele-specific real-time PCR, we revealed a minor signal from amplification of a mutant allele, showing a slight increase of mutant DNA in the exosome-treated MDA-MB-231 cells. The results demonstrate the exosome-mediated secretion of the fragments of mutant DNA and mRNA by the cancer cells and the exosomes' ability to transfer their cargo into the heterologous cells.


Subject(s)
Breast Neoplasms/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , DNA, Neoplasm/genetics , Exosomes/genetics , Alleles , Breast Neoplasms/pathology , Female , Humans , MCF-7 Cells , Mutation/genetics , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...