Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37112086

ABSTRACT

The results of systematic studies on the surface energy γ and its polar γP and dispersion γD components of statistical copolymers of styrene and butadiene, acrylonitrile and butadiene, and butyl acrylate and vinyl acetate, with regard to their thermal prehistory, are generalized. Along with copolymers, the surfaces of their composing homopolymers were examined. We obtained the energy characteristics of the adhesive surfaces of copolymers that contacted with air, high-energy aluminium Al (γ = 160 mJ/m2), and the low-energy substrate surface of polytetrafluoroethylene F4 (PTFE) (γ = 18 mJ/m2). The surfaces of copolymers in contact with air, aluminium, and PTFE were investigated for the first time. It was found that the surface energy of these copolymers tended to occupy an intermediate value between the surface energy of the homopolymers. The additive nature of the change in the surface energy of the copolymers with their composition, as previously established in the works of Wu, extends to the dispersive component of the free surface energy γD and the critical surface energy γcr, according to Zisman. It was shown that a significant influence on the adhesive activity of copolymers was exerted by the substrate surface upon which the adhesive was formed. Thus, for the butadiene-nitrile copolymer (BNC) samples formed in contact with a high-energy substrate, their surface energy growth was associated with a significant increase in the polar component of the surface energy γP from 2 mJ/m2 for the samples formed in contact with air, to an increase from 10 to 11 mJ/m2 for the samples formed in contact with Al. The reason why the interface influenced the change in the energy characteristics of the adhesives was the selective interaction of each macromolecule fragment with the active centres of the substrate surface. As a result, the composition of the boundary layer changed and it became enriched with one of the components. The structure of such layers is nonequilibrium. The thermal annealing of copolymers in the mode of a stepwise temperature increase led to a convergence in the values of γ, asymptotically tending to the value characteristic of the surface of the copolymers formed in air. The activation energies for the processes of the conformational rearrangements of the macromolecules in the surface layers of the copolymers were calculated. It was found that the conformational rearrangements of the macromolecules in the surface layers occurred as a result of the internal rotation of the functional groups that determined the polar component of the surface energy.

2.
Polymers (Basel) ; 16(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38201732

ABSTRACT

From the examples of three and four-component polymer-polymer systems characterized by amorphous separation, an original technique for determining the pair parameters of interaction between components based on the sorption isotherms of common solvent vapor, particularly water vapor, has been developed. The possibility of calculating thermodynamic characteristics of multicomponent polymer compositions with specific interactions of functional groups from experimentally obtained sorption isotherms is shown. An algorithm for calculating pair interaction parameters, estimating concentration dependences of chemical potential and Gibbs free energy of mixing, and predicting the phase state of polymer mixtures was presented for the first time for such systems. The technique was tested on the example of systems poly(N-vinylpyrrolidone) (PNVP)-polyethylene glycol (PEG), PNVP-PEG-Poly(acrylic acid) (PAA), poly(N-vinylcaprolactam) (PNVCL)-PEG, and polyvinyl alcohol (PVA)-PEG.

3.
Polymers (Basel) ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36616485

ABSTRACT

The possibility of using thermoplastic polymers in photopolymer compositions for SLA and DLP is discussed in this article. The diffusion and mutual solubility of uncured systems based on tert-butyl acrylate (tBA) and ethylene-vinyl acetate copolymers (EVA) or low-density polyethylene (LDPE) were studied. The solubility and diffusion of tBA with EVA containing 7, 20, and 40 wt.% vinyl acetate (VA) and with LDPE in the temperature range 20-75 °C were studied by optical micro-interferometry method. Phase diagrams of LDPE-tBA, EVA-7-tBA, and EVA-20-tBA systems were obtained. It is shown that the compositions are characterized by the phase-state diagrams of amorphous separation with the upper critical solution temperature (UCST). The concentration dependences of the interdiffusion coefficients as well as dependences of the self-diffusion coefficients on VA content and on temperature were plotted. The activation energy of self-diffusion of EVA and LDPE was calculated. It was shown that the most promising tBA modifier is EVA-40, which is completely soluble at all studied temperature ranges. The obtained data on the mixing of the initial components is valuable for further studies of the processes of structure formation during photocuring of compositions, regulation of the phase structure and, as a consequence, the performance characteristics of the 3D printable materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...