Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37834594

ABSTRACT

Organic phase-change materials (PCMs) hold promise in developing advanced thermoregulation and responsive energy systems owing to their high latent heat capacity and thermal reliability. However, organic PCMs are prone to leakages in the liquid state and, thus, are hardly applicable in their pristine form. Herein, we encapsulated organic PCM n-Octadecane into polyurethane capsules via polymerization of commercially available polymethylene polyphenylene isocyanate and polyethylene glycol at the interface oil-in-water emulsion and studied how various n-Octadecane feeding affected the shell formation, capsule structure, and latent heat storage properties. The successful shell polymerization and encapsulation of n-Octadecane dissolved in the oil core was verified by confocal microscopy and Fourier-transform infrared spectroscopy. The mean capsule size varied from 9.4 to 16.7 µm while the shell was found to reduce in thickness from 460 to 220 nm as the n-Octadecane feeding increased. Conversely, the latent heat storage capacity increased from 50 to 132 J/g corresponding to the growth in actual n-Octadecane content from 25% to 67% as revealed by differential scanning calorimetry. The actual n-Octadecane content increased non-linearly along with the n-Octadecane feeding and reached a plateau at 66-67% corresponded to 3.44-3.69 core-to-monomer ratio. Finally, the capsules with the reasonable combination of structural and thermal properties were evaluated as a thermoregulating additive to a commercially available paint.

2.
Proc Natl Acad Sci U S A ; 120(35): e2307618120, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37603762

ABSTRACT

Corrosion is one of the major issues for sustainable manufacturing globally. The annual global cost of corrosion is US$2.5 trillion (approximately 3.4% of the world's GDP). The traditional ways of corrosion protection (such as barriers or inhibiting) are either not very effective (in the case of barrier protection) or excessively expensive (inhibiting). Here, we demonstrate a concept of nanoreactors, which are able to controllably release or adsorb protons or hydroxides directly on corrosion sites, hence, selectively regulating the corrosion reactions. A single nanoreactor comprises a nanocompartment wrapped around by a pH-sensing membrane represented, respectively, by a halloysite nanotube and a graphene oxide/polyamine envelope. A nanoreactor response is determined by the change of a signaling pH on a given corrosion site. The nanoreactors are self-assembled and suitable for mass-line production. The concept creates sustainable technology for developing smart anticorrosion coatings, which are nontoxic, selective, and inexpensive.

3.
ACS Omega ; 7(8): 6728-6736, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35252668

ABSTRACT

The problem of microbial growth on various surfaces has increased concern in society in the context of antibiotic misuse and the spreading of hospital infections. Thus, the development of new, antibiotic-free antibacterial strategies is required to combat bacteria resistant to usual antibiotic treatments. This work reports a new method for producing an antibiotic-free antibacterial halloysite-based nanocomposite with silver nanoparticles and phosphomolybdic acid as biocides, which can be used as components of smart antimicrobial coatings. The composite was characterized by using energy-dispersive X-ray fluorescence spectroscopy and transmission electron microscopy. The release of phosphomolybdic acid from the nanocomposite was studied by using UV-vis spectroscopy. It was shown that the antibiotic-free nanocomposite consisting of halloysite nanotubes decorated with silver nanoparticles loaded with phosphomolybdic acid and treated with calcium chloride possesses broad antibacterial properties, including the complete growth inhibition of Staphylococcus aureus and Pseudomonas aeruginosa bacteria at a 0.5 g × L-1 concentration and Acinetobacter baumannii at a 0.25 g × L-1 concentration.

4.
Environ Sci Pollut Res Int ; 29(31): 46737-46750, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35174460

ABSTRACT

Triple action pollutant responsive multi-layer hybrid nanocoatings of architecture PEI(PAA/ZnO-Co3O4)n were constructed through ZnO-Co3O4 binary oxide co-precipitation followed by its inclusion in multi-layer polymeric thin films using Layer-by-Layer (LbL) deposition. Characterization of the designed architecture was carried out via FTIR, XRD, UV-Vis, and Raman spectroscopic studies to evaluate the chemical nature, bonding, and crystallographic behavior of ZnO-Co3O4. Peaks of ZnO-Co3O4 were recorded at 586.38, 486.08, and 443.64 cm-1 while pronounced shifting of ZnO characteristic E2 (high) peak ~ 450 cm-1 and appearance of modes around 495, 530, 630, and 719 cm-1 indexed via Raman studies validated Co3O4 impregnation into ZnO structure. XRD patterns of ZnO-Co3O4 compared to their previously reported pristine structures also justified the formation of binary oxide as unit composite. SEM micrographs confirmed homogenous multi-layered depositions while EDX analysis confirmed their uniform elemental distribution in the unit structure. Sequential multi-layer buildup up to 48 layer pairs was monitored using ellipsometry with maximum film thickness ~ 89 nm and by UV-Vis at 376 nm. The prepared thin films exhibited significant photodegradation of methylene blue ~ 91% and Cu (II) adsorption capacity ~ 89% within first 90 min of contact, along with prominent bactericidal efficiency against E. coli within 24 h of reaction time. FAAS, ICP-OES, and UV-Vis spectroscopy analyses make these multifunctional hybrid nanocoatings promising for industrial wastewater as well as drinking water purification setups. Furthermore, protuberant recycling and regenerative capacity make these hybrid nanocoatings an eco-friendly system for hydro-remediation.


Subject(s)
Zinc Oxide , Adsorption , Cobalt , Escherichia coli , Oxides/chemistry , Polymers , Water , Zinc Oxide/chemistry
5.
ACS Omega ; 6(39): 25828-25834, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34632238

ABSTRACT

Applying the eutectic hydrated salt (EHS) mixture of Na2HPO4·12H2O and Na2SO4·10H2O in a 1:1 weight ratio as a phase-change material and natural sepiolite nanocarriers as a matrix, the form-stable phase-change composite EHS@sepiolite was fabricated by vacuum impregnation. Due to the high porosity of sepiolite and its nanofibrous structure with internal channels, the effective loading of the phase-change material reached as high as 88 wt %. The melting temperature of the composite was 38.1 °C and its melting enthalpy was 185 J g-1. The crystallinity of the hydrated salt mixture was retained after loading into the sepiolite matrix. The composite demonstrated high stability over 50 heat uptake/release cycles maintaining its melting temperature and melting enthalpy the same. The combination of natural sepiolite nanocarriers and crystallohydrates is a cheap and efficient nanoscale energy storage system with high potential for practical applications and upscaling because of their natural abundance.

6.
ACS Appl Energy Mater ; 4(11): 12789-12797, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-35128339

ABSTRACT

Microcapsules loaded with n-docosane as phase change material (mPCMs) for thermal energy storage with a phase change transition temperature in the range of 36-45 °C have been employed to impregnate cotton fabrics. Fabrics impregnated with 8 wt % of mPCMs provided 11 °C of temperature buffering effect during heating. On the cooling step, impregnated fabrics demonstrated 6 °C temperature increase for over 100 cycles of switching on/off of the heating source. Similar thermoregulating performance was observed for impregnated fabrics stored for 4 years (1500 days) at room temperature. Temperature buffering effect increased to 14 °C during heating cycle and temperature increase effect reached 9 °C during cooling cycle in the aged fabric composites. Both effects remained stable in aged fabrics for more than 100 heating/cooling cycles. Our study demonstrates high potential use of the microencapsulated n-docosane for thermal management applications, including high-technical textiles, footwear materials, and building thermoregulating covers and paints with high potential for commercial applications.

7.
ACS Nano ; 14(7): 8894-8901, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32539347

ABSTRACT

Phase change materials (PCMs) store latent heat energy as they melt and release it upon freezing. However, they suffer from chemical instability and poor thermal conductivity, which can be improved by encapsulation. Here, we encapsulated a salt hydrate PCM (Mg(NO3)2·6H2O) within all-silica nanocapsules using a Pickering emulsion template. Electron microscopy analysis demonstrated robust silica-silica (RSS) shell formed inner silica layer of approximately 45 nm thickness, with silica Pickering emulsifiers anchored to the surface. The RSS nanostructured capsules are 300-1000 nm in size and have far superior thermal and chemical stability compared with that of the bulk salt hydrate. Differential scanning calorimetry showed encapsulated PCMs were stable over 500+ melt/freeze cycles (equivalent to 500+ day/night temperature difference) with a latent heat of 112.8 J·g-1. Thermogravimetric analysis displayed their impressive thermal stability, with as little as 37.2% mass loss at 800 °C. Raman spectroscopy proved the presence of salt hydrate within RSS capsules and illustrated the improved chemical stability compared to non-encapsulated Mg(NO3)2·6H2O. Energy capsule behavior compared with the bulk material was also observed at the macroscale with thermal imaging, showing that the melting/freezing behavior of the PCM is confined to the nanocapsule core. The thermal conductivity of the silica shell measured by laser flash thermal conductivity method is 1.4 ± 0.2 W·(m·K)-1, which is around 7 times more than the thermal conductivity of the polymer shell (0.2 W·(m·K)-1). RSS capsules containing PCMs have improved thermal stability and conductivity compared to polymer-based capsules and have good potential for thermoregulation or energy storage applications.

8.
ACS Omega ; 5(8): 4115-4124, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32149240

ABSTRACT

The photocatalytic degradation of organic molecules is one of the effective ways for water purification. At this point, photocatalytic microreactor systems seem to be promising to enhance the versatility of the photoassisted degradation approach. Herein, we propose photoresponsive microcapsules prepared via layer-by-layer assembly of polyelectrolytes on the novel CaCO3/TiO2 composite template cores. The preparation of CaCO3/TiO2 composite particles is challenging because of the poor compatibility of TiO2 and CaCO3 in an aqueous medium. To prepare stable CaCO3/TiO2 composites, TiO2 nanoparticles were loaded into mesoporous CaCO3 microparticles with a freezing-induced loading technique. The inclusion of TiO2 nanoparticles into CaCO3 templates was evaluated with scanning electron microscopy and elemental analysis with respect to their type, concentration, and number of loading iterations. Upon polyelectrolyte shell assembly, the CaCO3 matrix was dissolved, resulting in microreactor capsules loaded with TiO2 nanoparticles. The photoresponsive properties of the resulted capsules were tested by photoinduced degradation of the low-molecule dye rhodamine B in aqueous solution and fluorescently labeled polymer molecules absorbed on the capsule surface under UV light. The exposure of the capsules to UV light resulted in a pronounced degradation of rhodamine B in capsule microvolume and fluorescent molecules on the capsule surface. Finally, the versatility of preparation of multifunctional photocatalytic and magnetically responsive capsules was demonstrated by iterative freezing-induced loading of TiO2 and magnetite Fe3O4 nanoparticles into CaCO3 templates.

9.
ACS Nano ; 13(10): 12062-12069, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31532636

ABSTRACT

Facile methods toward strain-tolerant graphene-based electronic components remain scarce. Although being frequently used to disperse low-dimensional carbonaceous materials, ultrasonication (US) has never been reliable for fabricating stretchable carbonaceous nanocomposite (SCNC). Inspired by the unusual sonochemical assembly between graphene oxide (GO) and carbon nanotube (CNT), we verified the roots-like GO-CNT covalent bonding, rather than just π-π conjugation, was formed during US. In addition, the shockwave-induced collision in the binary-component system enables a burst of fragmentation at the early stage, spatially homogeneous hybridization, and time-dependent restoration of graphitic domains. All of the above are distinct from extensive fragmentation of a conventional single-component system and π-π conjugative assembly. The optimized SCNC exhibits conductivity comparable to reduced monolayer GO and outperforms π-π assemblies in retaining electrical conductance at a strain of 160%-among one of the best reported stretchable conductors. Raman analysis and mechanics simulation confirm the dominant role of counterweighing between the intrinsic and external strains on the mechano-response and durability of SCNC. This work suggests the guideline of creating multiple-component sonochemical systems for various functional nanocomposites.

10.
ACS Nano ; 13(6): 6151-6169, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31124656

ABSTRACT

Layer-by-layer (LbL) assembly is a widely used tool for engineering materials and coatings. In this Perspective, dedicated to the memory of ACS Nano associate editor Prof. Dr. Helmuth Möhwald, we discuss the developments and applications that are to come in LbL assembly, focusing on coatings, bulk materials, membranes, nanocomposites, and delivery vehicles.

11.
Chem Commun (Camb) ; 55(27): 3859-3867, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30895976

ABSTRACT

Here, we summarize the recent achievements in the field of the nanocontainer-based self-healing coatings made during the last 8 years. The development of nanocontainer-based self-healing coatings was started 15 years ago from the study of nanocontainers with stimuli-responsive release properties able to release anticorrosion agent (inhibitor) on demand only into a corroded area thus preventing its spontaneous leakage. Since then, many different types of nanocontainers have been demonstrated: from polymer capsules to porous inorganic nanoparticles with sophisticated mechanisms of release triggering. Nowadays, the study of the commercial application of nanocontainer-based self-healing coatings is the main focus in this area, especially for coatings with several autonomic functionalities. However, the search for the new types of multifunctional nanocontainers possessing different triggering mechanisms still remains active, especially for low-cost natural nanocontainers.

12.
J Phys Chem C Nanomater Interfaces ; 121(42): 23777-23787, 2017 Oct 26.
Article in English | MEDLINE | ID: mdl-29152033

ABSTRACT

Magnetic hardening and generation of room-temperature ferromagnetism at the interface between originally nonmagnetic transition metals and π-conjugated organics is understood to be promoted by interplay between interfacial charge transfer and relaxation-induced distortion of the metal lattice. The relative importance of the two contributions for magnetic hardening of the metal remains unquantified. Here, we disentangle their role via density functional theory simulation of several models of interfaces between Cu and polymers of different steric hindrance, π-conjugation, and electron-accepting properties: polyethylene, polyacetylene, polyethylene terephthalate, and polyurethane. In the absence of charge transfer, expansion and compression of the Cu face-centered cubic lattice is computed to lead to magnetic hardening and softening, respectively. Contrary to expectations based on the extent of π-conjugation on the organic and resulting charge transfer, the computed magnetic hardening is largest for Cu interfaced with polyethylene and smallest for the Cu-polyacetylene systems as a result of a differently favorable rehybridization leading to different enhancement of exchange interactions and density of states at the Fermi level. It thus transpires that neither the presence of molecular π-conjugation nor substantial charge transfer may be strictly needed for magnetic hardening of Cu-substrates, widening the range of organics of potential interest for enhancement of emergent magnetism at metal-organic interfaces.

13.
ACS Appl Mater Interfaces ; 9(44): 38908-38918, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29035502

ABSTRACT

Biopolymer-based multilayers become more and more attractive due to the vast span of biological application they can be used for, e.g., implant coatings, cell culture supports, scaffolds. Multilayers have demonstrated superior capability to store enormous amounts of small charged molecules, such as drugs, and release them in a controlled manner; however, the binding mechanism for drug loading into the multilayers is still poorly understood. Here we focus on this mechanism using model hyaluronan/polylysine (HA/PLL) multilayers and a model charged dye, carboxyfluorescein (CF). We found that CF reaches a concentration of 13 mM in the multilayers that by far exceeds its solubility in water. The high loading is not related to the aggregation of CF in the multilayers. In the multilayers, CF molecules bind to free amino groups of PLL; however, intermolecular CF-CF interactions also play a role and (i) endow the binding with a cooperative nature and (ii) result in polyadsorption of CF molecules, as proven by fitting of the adsorption isotherm using the BET model. Analysis of CF mobility in the multilayers by fluorescence recovery after photobleaching has revealed that CF diffusion in the multilayers is likely a result of both jumping of CF molecules from one amino group to another and movement, together with a PLL chain being bound to it. We believe that this study may help in the design of tailor-made multilayers that act as advanced drug delivery platforms for a variety of bioapplications where high loading and controlled release are strongly desired.

14.
ACS Appl Mater Interfaces ; 9(13): 11332-11336, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28220694

ABSTRACT

Organic-inorganic hybrid nanomaterials offer extremely valuable tools for monitoring many types of analytes in solution. Within this framework, aptamer-based nanomaterials for heavy metal detection are still very scarce. Herein, a novel sensing nanoprobe for the selective and sensitive detection of As(III) based on the combination of aptamers with mesoporous silica nanoparticles has been developed. The efficiency of the sensor is demonstrated in environmental conditions, showing a great potential in As(III) monitoring assays.

15.
Chemistry ; 22(13): 4389-94, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26864874

ABSTRACT

We have encapsulated the heat exchange material, n-docosane, into polyurethane capsules of different sizes. Decreasing the size of the capsules leads to changes of the crystallinity of phase-change material as well as melting/crystallization temperature. The novelty of the paper includes 1) protection of the nanostructured energy-enriched materials against environment during storage and controlled release of the encapsulated energy on demand and 2) study of the structure and surface-to-volume properties of the energy-enriched materials dispersed in capsules of different sizes. The stability of energy nanomaterials, influence of capsule diameter on their energy capacity, homogeneity and operation lifetime are investigated.

16.
ACS Appl Mater Interfaces ; 7(51): 28353-60, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26647922

ABSTRACT

Nanocomposite coatings are promising for a range of practical applications, and layer-by-layer assembly (LbL) is a versatile tool for nanocomposite formation. However, conventional LbL is a quite laborious procedure taking a lot of time to reach a sufficient thickness of the coatings required for practical applications. Herein, we proposed a novel variant of the LbL approach based on the deposition of hydrophilic polyelectrolyte molecules from a polar solvent and hydrophobic magnetite nanoparticles (NPs) from a nonpolar dispersion medium with an intermediate washing in the same polar solvent. The composite multilayers formed in this way exhibit exponential growth of the thickness and mass. On the basis of quartz crystal microbalance (QCM), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), and surface profile measurements, we propose a model describing the driving force of multilayer formation and the factors leading to nonlinear growth of their mass and thickness. The results allow one to expand the understanding of the mechanism of the LbL assembly in order to form multifunctional nanocomposites in a more efficient way.

17.
Chemistry ; 21(31): 11174-9, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26119217

ABSTRACT

Polyurethane microcapsules were prepared by mini-emulsion interfacial polymerization for encapsulation of phase-change material (n-docosane) for energy storage. Three steps were followed with the aim to optimize synthesis conditions of the microcapsules. First, polyurethane microcapsules based on silicone oil core as an inert template with different silicone oil/poly(ethylene glycol)/4,4'-diphenylmethane diisocyanate wt % ratio were synthesized. The surface morphology of the capsules was analyzed by scanning electronic microscopy (SEM) and the chemical nature of the shell was monitored by Fourier transform infrared spectroscopy (FT-IR). Capsules with the silicone oil/poly(ethylene glycol)/4,4'-diphenylmethane diisocyanate 10/20/20 wt % ratio showed the best morphological features and shell stability with average particle size about 4 µm, and were selected for the microencapsulation of the n-docosane. In the second stage, half of the composition of silicone oil was replaced with n-docosane and, finally, the whole silicone oil content was replaced with docosane following the same synthetic procedure used for silicone oil containing capsules. Thermal and cycling stability of the capsules were investigated by thermal gravimetric analysis (TGA) and the phase-change behavior was evaluated by differential scanning calorimetry (DSC).


Subject(s)
Alkanes/chemistry , Capsules/chemistry , Polyurethanes/chemistry , Drug Compounding , Isocyanates/chemistry , Phase Transition , Silicone Oils/chemistry , Temperature
18.
Curr Opin Pharmacol ; 18: 42-6, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25233260

ABSTRACT

Encapsulation is an important technology for pharmaceutical industry, food production, et cetera. Its current level of development requires capsule functionalization. One of the interesting ideas to provide new functionality to the microcapsule and nanocapsule is layer-by-layer deposition of functional species. This technique provides step-by-step adsorption of various species (polyelectrolytes, nanoparticles, proteins) when the layer growth is controlled by electrostatic, hydrogen bonding, hydrophobic forces and forming multilayer shells with nanometer precision. This review article introduces recent achievements of layer-by-layer technique attaining external navigation ability and release properties the capsule shell.


Subject(s)
Capsules , Capsules/chemistry , Capsules/pharmacology , Drug Compounding/methods , Drug Delivery Systems , Nanoparticles/chemistry , Polymers/chemistry
19.
ACS Appl Mater Interfaces ; 6(9): 6570-8, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24708592

ABSTRACT

Chitosan/xanthan gum microcontainers with a core-shell structure formed due to chemical interactions between polysaccharide chains induced by ultrasonication are presented. Containers were prepared by sonication of water-immiscible (oil-like) liquids in the solution of polysaccharides. One-step fabrication of the container permanent shell is possible, because of the contribution of ultrasonically caused formation of hydrogen bonds and amide linkages. We synthesized containers in a wide size range from 350 nm to 7500 nm, varying in oil/water ratio. The microcontainers were modified with oppositely charged polyelectrolytes and microparticles, which could be used to impart the specified properties to the system. The biocide 4,5-dichloro-2-n-octyl-4-isothiazoline-3-one (DCOIT) was loaded into the proposed containers by utilizing its solution as an oil phase. The following incorporation of the DCOIT containers into the polymer coating demonstrated more sustained antimicrobial activity (∼30%) of the biocide in the encapsulated state, compared to its non-encapsulated form.


Subject(s)
Anti-Infective Agents/chemistry , Lipids/chemistry , Polysaccharides/chemistry , Chitosan/chemistry , Microscopy, Electron, Scanning , Polysaccharides, Bacterial/chemistry , Spectroscopy, Fourier Transform Infrared
20.
Chem Soc Rev ; 42(8): 3628-46, 2013 Apr 21.
Article in English | MEDLINE | ID: mdl-23412474

ABSTRACT

Functional polymer micro- and nanoparticles with novel morphology are of great importance because of their wide range of applications in complex biological systems and nanotechnology. Due to the outstanding advantage of the absence of any surfactant, precipitation polymerization as a heterogeneous polymerization technique has been developed to prepare various uniform and clean polymer particles, such as microspheres, nanoparticles, core-shell particles, core-double shell particles, single-shell hollow particles, double-shell hollow particles, and rattle-type hollow nanostructures. In this review, a general introduction into the categories of precipitation polymerization and their mechanisms is presented. The precise control of particle size, size distribution, pore size, morphology and surface chemistry of micro- and nanoparticles, core-shell hybrids and polymer hollow structures is discussed. The development of complex nanostructures and their applications in separation, drug delivery and nano-reactor systems are highlighted as well.

SELECTION OF CITATIONS
SEARCH DETAIL
...