Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37446429

ABSTRACT

The synthesis of nanosized organic benzil (C6H5CO)2 crystals within the mesoporous SiO2 host matrix was investigated via X-ray diffraction, transmission electron microscopy, Raman spectroscopy, and ab initio lattice dynamics analysis. Combining these methods, we have proved that the main structural properties of benzil nanocrystals embedded into SiO2 host membranes with pore diameters of 6.0, 7.8, 9.4, and 13.0 nm are preserved compared to a bulk benzil crystal. Space confinement has an insignificant impact on the lattice vibrational properties of benzil crystals implanted into the host matrices. The ab initio lattice dynamics calculation of the phonon spectrum in the Brillouin zone center shows the mechanical and dynamical stability of benzil lattice, revealing very low optical frequency of 11 cm-1 at point Γ.

2.
Sci Rep ; 13(1): 9943, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37337016

ABSTRACT

We demonstrate a series of organic-inorganic nanocomposite materials combining the mesoporous silica (PS) and benzil (BZL) nanocrystals embedded into its nanochannels (6.0-13.0 nm in diameter) by capillary crystallization. One aims to design novel, efficient nonlinear optical composite materials in which inactive amorphous host PS-matrix provides a tubular scaffold structure, whereas nonlinear optical functionality results from specific properties of the deposited guest BZL-nanocrystals. A considerable contraction of the BZL melt during its crystallization inside the silica nanochannels results in a formation of the texture consisting of (221)- and (003)-oriented BZL nanoclusters (22 nm in length), separated by voids. Specificity of the textural morphology similarly to the spatial confinement significantly influences the nonlinear optical features of composite PS:BZL materials being explored in the second harmonic generation (SHG) experiment. The light polarization anisotropy of the SHG response appears to be considerably reduced at channel diameters larger than 7 nm apparently due to the multiple scattering and depolarization of the light on randomly distributed and crystallographically oriented BZL-nanoclusters. The normalized SHG response decreases nonlinearly by more than one order of magnitude as the channel diameter decreases from 13.0 to 6.0 nm and vanishes when spatial cylindrical confinement approaches the sizes of a few molecular layers suggesting that the embedded BZL clusters indeed are not uniformly crystalline but are characterized by more complex morphology consisting of a disordered SHG-inactive amorphous shell, covering the channel wall, and SHG-active crystalline core. Understanding and controlling of the textural morphology in inorganic-organic nanocrystalline composites as well as its relationships with nonlinear optical properties can lead to the development of novel efficient nonlinear optical materials for the light energy conversion with prospective optoelectronic and photonic applications.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 275: 121157, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35316625

ABSTRACT

The lattice dynamics of preferentially aligned nanocrystals formed upon drying of aqueous Ba(NO3)2 solutions in a mesoporous silica glass traversed by tubular pores of approximately 12 nm are explored by Raman scattering. To interpret the experiments on the confined nanocrystals polarized Raman spectra of bulk single crystals and X-ray diffraction experiments are also performed. Since a cubic symmetry is inherent to Ba(NO3)2, a special Raman scattering geometry was utilized to separate the phonon modes of Ag and Eg species. Combining group-theory analysis and ab initio lattice dynamics calculations a full interpretation of all Raman lines of the bulk single crystal is achieved. Apart from a small confinement-induced line broadening, the peak positions and normalized peak intensities of the Raman spectra of the nanoconfined and macroscopic crystals are identical. Interestingly, the Raman scattering experiment indicates the existence of comparatively large,∼10-20 µm, single-crystalline regions of Ba(NO3)2 embedded in the porous host, near three orders of magnitude larger than the average size of single nanopores. This is contrast to the initial assumption of non-interconnected pores. It rather indicates an inter-pore propagation of the crystallization front, presumably via microporosity in the pore walls.

4.
Nanoscale ; 13(44): 18714-18725, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34739018

ABSTRACT

Photonic metamaterials with properties unattainable in base materials are already beginning to revolutionize optical component design. However, their exceptional characteristics are often static, as artificially engineered into the material during the fabrication process. This limits their application for in-operando adjustable optical devices and active optics in general. Here, for a hybrid material consisting of a liquid crystal-infused nanoporous solid, we demonstrate active and dynamic control of its meta-optics by applying alternating electric fields parallel to the long axes of its cylindrical pores. First-harmonic Pockels and second-harmonic Kerr birefringence responses, strongly depending on the excitation frequency and temperature, are observed in a frequency range from 50 Hz to 50 kHz. This peculiar behavior is quantitatively traced by a Landau-De Gennes free energy analysis to an order-disorder orientational transition of the rod-like mesogens and intimately related changes in the molecular mobilities and polar anchoring at the solid walls on the single-pore, meta-atomic scale. Thus, our study provides evidence that liquid crystal-infused nanopores exhibit integrated multi-physical couplings and reversible phase changes that make them particularly promising for the design of photonic metamaterials with thermo-electrically tunable birefringence in the emerging field of space-time metamaterials aiming at full spatio-temporal control of light.

SELECTION OF CITATIONS
SEARCH DETAIL
...