Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(8): 6292-6312, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38624086

ABSTRACT

Mitochondria are important drug targets for anticancer and other disease therapies. Certain human mitochondrial DNA sequences capable of forming G-quadruplex structures (G4s) are emerging drug targets of small molecules. Despite some mitochondria-selective ligands being reported for drug delivery against cancers, the ligand design is mostly limited to the triphenylphosphonium scaffold. The ligand designed with lipophilic small-sized scaffolds bearing multipositive charges targeting the unique feature of high mitochondrial membrane potential (MMP) is lacking and most mitochondria-selective ligands are not G4-targeting. Herein, we report a new small-sized dicationic lipophilic ligand to target MMP and mitochondrial DNA G4s to enhance drug delivery for anticancer. The ligand showed marked alteration of mitochondrial gene expression and substantial induction of ROS production, mitochondrial dysfunction, DNA damage, cellular senescence, and apoptosis. The ligand also exhibited high anticancer activity against HCT116 cancer cells (IC50, 3.4 µM) and high antitumor efficacy in the HCT116 tumor xenograft mouse model (∼70% tumor weight reduction).


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , G-Quadruplexes , Mitochondria , Humans , G-Quadruplexes/drug effects , Ligands , Animals , Mitochondria/drug effects , Mitochondria/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Mice , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Apoptosis/drug effects , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Mice, Nude , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Xenograft Model Antitumor Assays , HCT116 Cells , DNA, Mitochondrial/metabolism
2.
ACS Sens ; 9(3): 1545-1554, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38450702

ABSTRACT

rRNAs are prevalent in living organisms. They are produced in nucleolus and mitochondria and play essential cellular functions. In addition to the primary biofunction in protein synthesis, rRNAs have been recognized as the emerging signaling molecule and drug target for studies on nucleolus morphology, mitochondrial autophagy, and tumor cell malignancy. Currently, only a few rRNA-selective probes have been developed, and most of them encounter the drawbacks of low water solubility, poor nuclear membrane permeability, short emission wavelength, low stability against photobleaching, and high cytotoxicity. These unfavorable properties of rRNA probes limit their potential applications. In the present study, we reported a new rRNA-selective and near-infrared fluorescent turn-on probe, 4MPS-TO, capable of tracking rRNA in live human cancer cells. The real-time monitoring performance in nucleolus morphology and mitochondrial autophagy is demonstrated in HeLa cells. The probe shows great application potential for being used as a rRNA-selective, sensitive, and photostable imaging tool in chemical biology study and drug screening.


Subject(s)
Mitophagy , Neoplasms , Humans , HeLa Cells , Fluorescent Dyes/chemistry , Optical Imaging/methods , Autophagy
3.
Chemistry ; 29(34): e202300705, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-36971407

ABSTRACT

The development of site-specific, target-selective and biocompatible small molecule ligands as a fluorescent tool for real-time study of cellular functions of RNA G-quadruplexes (G4s), which are associated with human cancers, is of significance in cancer biology. We report a fluorescent ligand that is a cytoplasm-specific and RNA G4-selective fluorescent biosensor in live HeLa cells. The in vitro results show that the ligand is highly selective targeting RNA G4s including VEGF, NRAS, BCL2 and TERRA. These G4s are recognized as human cancer hallmarks. Moreover, intracellular competition studies with BRACO19 and PDS, and the colocalization study with G4-specific antibody (BG4) in HeLa cells may support that the ligand selectively binds to G4s in cellulo. Furthermore, the ligand was demonstrated for the first time in the visualization and monitoring of dynamic resolving process of RNA G4s by the overexpressed RFP-tagged DHX36 helicase in live HeLa cells.


Subject(s)
G-Quadruplexes , Neoplasms , Humans , HeLa Cells , Ligands , RNA/metabolism , Cytoplasm/metabolism
4.
J Appl Microbiol ; 133(4): 2167-2181, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35490292

ABSTRACT

AIMS: The emerging of drug resistant Pseudomonas aeruginosa is a critical challenge and renders an urgent action to discover innovative antimicrobial interventions. One of these interventions is to disrupt the pseudomonas quinolone signal (pqs) quorum sensing (QS) system, which governs multiple virulence traits and biofilm formation. This study aimed to investigate the QS inhibitory activity of a series of new PqsR inhibitors bearing a quinoline scaffold against Ps. aeruginosa. METHODS AND RESULTS: The results showed that compound 1 suppressed the expression of QS-related genes and showed the best inhibitory activity to the pqs system of wild-type Ps. aeruginosa PAO1 with an IC50 of 20.22 µmol L-1 . The virulence factors including pyocyanin, total protease, elastase and rhamnolipid were significantly suppressed in a concentration-dependent manner with the compound. In addition, compound 1 in combination with tetracycline inhibited synergistically the bacterial growth and suppressed the biofilm formation of PAO1. The molecular docking studies also suggested that compound 1 could potentially interact with the ligand-binding domain of the Lys-R type transcriptional regulator PqsR as a competitive antagonist. CONCLUSIONS: The quinoline-based derivatives were found to interrupt the quorum sensing system via the pqs pathway and thus the production of virulence factors was inhibited and the antimicrobial susceptibility of Ps. aeruginosa was enhanced. SIGNIFICANCE AND IMPACT OF STUDY: The study showed that the quinoline-based derivatives could be used as an anti-virulence agent for treating Ps. aeruginosa infections.


Subject(s)
Pseudomonas aeruginosa , Pyocyanine , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Biofilms , Endopeptidases/pharmacology , Ligands , Molecular Docking Simulation , Pancreatic Elastase/metabolism , Pseudomonas aeruginosa/metabolism , Pyocyanine/metabolism , Quorum Sensing , Tetracyclines/pharmacology , Virulence Factors/genetics , Virulence Factors/metabolism
5.
Eur J Med Chem ; 236: 114360, 2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35421657

ABSTRACT

The discovery of small molecular inhibitors targeting essential and conserved bacterial drug targets such as FtsZ protein is a promising approach to fight against multi-drug resistant bacteria. In the present study, two new series of FtsZ inhibitors based on a 1-methylquinolinium scaffold were synthesized. The inhibitors possess a variety of substituent groups including the cyclic or linear amine skeleton at the 2- and 4-position of the quinolinium ring for structure-activity relationship study. In general, the inhibitors bearing a cyclic amine substituent at the 4-position of the quinolinium ring showed better antibacterial activity (MIC down to 0.25 µg/mL) than that at the 2-position, especially against Gram-positive bacteria. Among the twenty FtsZ inhibitors examined in various assays, A3 was identified to exhibit excellent antibacterial activity against S. aureus (MIC = 0.5-1 µg/mL), S. epidermidis (MIC = 0.25 µg/mL) and E. faecium (MIC = 1-8 µg/mL). More importantly, A3 showed low hemolytic toxicity (IC5 = 64 µg/mL) and was found not readily to induce drug resistance. A3 at 2-8 µg/mL promoted the polymerization of FtsZ and interrupted the bacterial division. Furthermore, the ligand-FtsZ interaction study conducted with circular dichroism and molecular docking revealed that A3 induced secondary structure changes of FtsZ protein upon binding to the interdomain cleft of the protein. A3 is thus a potent inhibitor of FtsZ and shows potential to be used as a new antibacterial agent against drug-resistant bacteria.


Subject(s)
Bacterial Proteins , Staphylococcus aureus , Amines , Anti-Bacterial Agents/chemistry , Cytoskeletal Proteins , Microbial Sensitivity Tests , Molecular Docking Simulation , Staphylococcus aureus/metabolism , Staphylococcus epidermidis , Structure-Activity Relationship
6.
J Med Chem ; 64(4): 2125-2138, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33559473

ABSTRACT

A series of fluorescent ligands, which were systematically constructed from thiazole orange scaffold, was investigated for their interactions with G-quadruplex structures and antitumor activity. Among the ligands, compound 3 was identified to exhibit excellent specificity toward telomere G4-DNA over other nucleic acids. The affinity of 3-Htg24 was almost 5 times higher than that of double-stranded DNA and promoter G4-DNA. Interaction studies showed that 3 may bind to both G-tetrad and the lateral loop near the 5'-end. The intracellular colocalization with BG4 and competition studies with BRACO19 reveal that 3 may interact with G4-structures. Moreover, 3 reduces the telomere length and downregulates hTERC and hTERT mRNA expression in HeLa cells. The cytotoxicity of 3 against cancer cells (IC50 = 12.7-16.2 µM) was found to be generally higher than noncancer cells (IC50 = 52.3 µM). The findings may support that the ligand is telomere G4-DNA specific and may provide meaningful insights for anticancer drug design.


Subject(s)
Benzothiazoles/pharmacology , DNA/metabolism , Down-Regulation/drug effects , Fluorescent Dyes/pharmacology , G-Quadruplexes , Quinolines/pharmacology , Styrenes/pharmacology , Benzothiazoles/chemical synthesis , Benzothiazoles/metabolism , Cell Line, Tumor , DNA/genetics , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/metabolism , Humans , Ligands , Microscopy, Confocal , Microscopy, Fluorescence , Quinolines/chemical synthesis , Quinolines/metabolism , RNA/metabolism , Styrenes/chemical synthesis , Styrenes/metabolism , Telomerase/metabolism
7.
Phytomedicine ; 85: 153401, 2021 May.
Article in English | MEDLINE | ID: mdl-33191068

ABSTRACT

BACKGROUND: The Coronavirus disease 2019 pneumonia broke out in 2019 (COVID-19) and spread rapidly, which causes serious harm to the health of people and a huge economic burden around the world. PURPOSE: In this study, the network pharmacology, molecular docking and surface plasmon resonance technology (SPR) were used to explore the potential compounds and interaction mechanism in the Toujie Quwen Granules (TQG) for the treatment of coronavirus pneumonia 2019. STUDY DESIGN: The chemical constituents and compound targets of Lonicerae Japonicae Flos, Pseudostellariae Radix, Artemisia Annua L, Peucedani Radix, Forsythiae Fructus, Scutellariae Radix, Hedysarum Multijugum Maxim, Isatidis Folium, Radix Bupleuri, Fritiliariae Irrhosae Bulbus, Cicadae Periostracum, Poria Cocos Wolf, Pseudobulbus Cremastrae Seu Pleiones, Mume Fructus, Figwort Root and Fritillariae Thunbrgii Bulbus in TQG were searched. The target name was translated to gene name using the UniProt database and then the Chinese medicine-compound-target network was constructed. Protein-protein interaction network (PPI), Gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the core targets were performed in the Metascape to predict its mechanism. The top 34 compounds in the Chinese medicine-compound-target network were docked with SARS-CoV-2 3CL enzyme and SARS--CoV--2 RNA-dependent RNA polymerase (RdRp) and then the 13 compounds with lowest affinity score were docked with angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 Spike protein and interleukin 6 to explore its interaction mechanism. Lastly, SPR experiments were done using the quercetin, astragaloside IV, rutin and isoquercitrin, which were screened from the Chinese medicine-compound-target network and molecular docking. RESULTS: The Chinese medicine-compound-target network includes 16 medicinal materials, 111 compounds and 298 targets, in which the degree of PTGS2, TNF and IL-6 is higher compared with other targets and which are the disease target exactly. The result of GO function enrichment analysis included the response to the molecule of bacterial origin, positive regulation of cell death, apoptotic signaling pathway, cytokine-mediated signaling pathway, cytokine receptor binding and so on. KEGG pathway analysis enrichment revealed two pathways: signaling pathway- IL-17 and signaling pathway- TNF. The result of molecular docking showed that the affinity score of compounds including quercetin, isoquercitrin, astragaloside IV and rutin is higher than other compounds. In addition, the SPR experiments revealed that the quercetin and isoquercitrin were combined with SARS-CoV-2 Spike protein rather than Angiotensin-converting enzyme 2, while astragaloside IV and rutin were combined with ACE2 rather than SARS-CoV-2 Spike protein. CONCLUSION: TQG may have therapeutic effects on COVID-19 by regulating viral infection, immune and inflammation related targets and pathways, in the way of multi-component, multi-target and multi-pathway.


Subject(s)
Drugs, Chinese Herbal/pharmacology , SARS-CoV-2/drug effects , Signal Transduction/drug effects , Angiotensin-Converting Enzyme 2/chemistry , Gene Ontology , Humans , Interleukin-6/chemistry , Medicine, Chinese Traditional , Molecular Docking Simulation , Plant Extracts/pharmacology , Protein Interaction Maps , Spike Glycoprotein, Coronavirus/chemistry , Surface Plasmon Resonance , COVID-19 Drug Treatment
8.
Chem Commun (Camb) ; 56(95): 15016-15019, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33185205

ABSTRACT

A small-sized c-MYC promoter G-quadruplex selective fluorescent BZT-Indolium binding ligand was demonstrated for the first time as a highly target-specific and photostable probe for in vitro staining and live cell imaging and it was found to be able to inhibit the amplification of the c-MYC G-rich sequence (G-quadruplex) and down-regulate oncogene c-MYC expression in human cancer cells (HeLa).


Subject(s)
Benzothiazoles/chemistry , DNA-Binding Proteins/analysis , Fluorescent Dyes/chemistry , Indoles/chemistry , Transcription Factors/analysis , Amino Acid Sequence , Biosensing Techniques , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Down-Regulation , G-Quadruplexes , HeLa Cells , Humans , Ligands , Optical Imaging , Promoter Regions, Genetic , Sensitivity and Specificity , Staining and Labeling , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...