Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123791, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38134656

ABSTRACT

Water content was an essential indicator in organic solvents, and it was necessary to develop a facile, cheap and readily available tool for the real-time, specifical and sensitive detection of water content. In this work, two novel D-π-A type near-infrared fluorescence sensors (DCM-1 and DCM-2) were designed and synthesized for the detection of trace water in organic solvents. DCM-1 and DCM-2 with solvent-dependent effects and large Stokes shift (>120 nm) showed good linear "intensity-to-content" relationships in four commonly-used organic solvents, and accomplished the ultra-fast and high-accuracy detection of the trace water in organic solvents. More importantly, a portable, fast, and accurate smartphone-assisted visual assay was designed for visual quantitative detection of the water content in organic solvents with a detection limit as low as 1.028 % v/v (e.g. in ethanol) and a wide detection range (0-60 % v/v). The smartphone-based visual assay was further applied to estimate the water content in disinfection alcohol and commercial liquor, which furnished a new strategy and broad prospects to achieve the accurate onsite detection of water content.


Subject(s)
Smartphone , Water , Alcoholic Beverages , Solvents , Ethanol , Fluorescent Dyes
2.
Chem Rev ; 123(18): 11047-11136, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37677071

ABSTRACT

Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.

3.
Adv Sci (Weinh) ; 10(20): e2207250, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37127899

ABSTRACT

Photocatalysis is an important technique for synthetic transformations. However, little attention has been paid to light-driven synergistic redox reactions for directed synthesis. Herein, the authors report tunable oxidation of benzyl to phenylcarbinol with the modest yield (47%) in 5 h via singlet oxygen (1 O2 ) and proton-coupled electron transfer (PCET) over the photocatalyst Zn0.5 Cd0.5 S (ZCS)/graphene oxide (GO) under exceptionally mild conditions. Theoretical calculations indicate that the presence of S vacancies on the surface of ZCS/GO photocatalyst is crucial for the adsorption and activation of O2 , successively generating the superoxide radical (• O2 - ) and 1 O2 , attributing to the regulation of local electron density on the surface of ZCS/GO and photogenerated holes (h+ ). Meanwhile, accelerated transfer of photogenerated electrons (e- ) to GO caused by the π-π stacking effect is conducive to the subsequent aldehyde hydrogenation to benzyl alcohol rather than non-selective oxidation of aldehyde to carboxylic acid. Anisotropic charge transport driven by the built-in electric field can further promote the separation of e- and h+ for multistep reactions. Promisingly, one-pot photocatalytic conversion of p-xylene to 4-methylbenzyl alcohol is beneficial for reducing the harmful effects of aromatics on human health. Furthermore, this study provides novel insights into the design of photocatalysts for cascade reactions.

4.
Org Lett ; 25(9): 1530-1535, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36852941

ABSTRACT

A feasible protocol that uses atomic groups (KSCN, KSeCN, and NH2CN), o-bromobenzoyl hydrazides, and formyls as reaction factors to synthesize N-fused 1,2,4-triazole with benzothiazides, benzoselenazinones, and quinazolinones was proposed. The method overcomes the lengthy multistep synthesis, narrow substrate scope, and toxicity challenge induced by the use or production of hazardous substances. It also enables the development of fused-heterocyclic selenium and quinazolinone derivatives. Their fluorescent performance further demonstrates the practicability of this methodology.

5.
Talanta ; 257: 124338, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36796172

ABSTRACT

Tin (Sn) element plays a vital role in the human body, and its detection is a mandatory inspection item for canned food. The application of covalent organic frameworks (COFs) in fluorescence detection has received extensive attentions. In this work, we designed a kind of novel COFs (COF-ETTA-DMTA) with high specific surface area (353.13 m2/g) by solvothermal synthesis using 2,5-dimethoxy-1,4-dialdehyde and tetra (4-aminophenyl) ethylene as precursors. It shows fast response time (about 50 s), low detection limit (228 nM) and good linearity (R2 = 0.9968) for the detection of Sn2+. Via coordination behavior, the recognition mechanism of COFs toward Sn2+ was simulated and verified by the small molecule with the same functional unit. More importantly, this COFs was successfully applied to identify Sn2+ in solid canned food (luncheon pork, canned fish, canned red kidney beans) with satisfactory results. This work provides a new approach for determining metal ions with COFs taking the advantage of their natural rich reaction set and specific surface area, improving the detection sensitivity and capacity.


Subject(s)
Metal-Organic Frameworks , Humans , Animals , Fluorescence , Food, Preserved , Pork Meat/analysis , Seafood/analysis , Tin/analysis , Tin/chemistry
6.
Org Biomol Chem ; 20(29): 5845-5851, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35848391

ABSTRACT

A metal-free inactive C(sp3)-H bond functionalization of thioethers with styrenes using TBHP as an initiator and DBU as a base has been developed. This transformation has broken through the low activity of thioethers and realized moderate yields. Herein extended experiments were conducted to confirm the radical relay process, reaction energy and intermediate transformations.

7.
Front Nutr ; 9: 932826, 2022.
Article in English | MEDLINE | ID: mdl-35832048

ABSTRACT

Copper is a vital trace metal in human body, which plays the significant roles in amounts of physiological and pathological processes. The application of copper-selective probe has attracted great interests from environmental tests to life process research, yet a few of sensitive Cu2+ tests based on on-site analysis have been reported. In this paper, a novel fluorescein-based fluorescent probe N4 was designed, synthesized, and characterized, which exhibited high selectivity and sensitivity to Cu2+ comparing with other metal ions in ethanol-water (1/1, v/v) solution. The probe N4 bonded with Cu2+ to facilitate the ring-opening, and an obvious new band at 525 nm in the fluorescence spectroscopy appeared, which could be used for naked-eye detection of Cu2+ within a broad pH range of 6-9. Meanwhile, a good linearity between the fluorescence intensity and the concentrations of Cu2+ ranged 0.1-1.5 eq. was observed, and the limit of detection of N4 to Cu2+ was calculated to be as low as 1.20 µm. In addition, the interaction mode between N4 and Cu2+ was found to be 1:1 by the Job's plot and mass experiment. Biological experiments showed that the probe N4 exhibited low biological toxicity and could be applied for Cu2+ imaging in living cells. The significant color shift associated with the production of the N4-Cu2+ complex at low micromolar concentrations under UV light endows N4 with a promising probe for field testing of trace Cu2+ ions.

8.
Anal Bioanal Chem ; 414(19): 5887-5897, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35676562

ABSTRACT

Hypochlorous acid (HClO), the core bactericidal substance of the human immune system, plays a vital role in many physiological and pathological processes in the human body. In this work, we designed and synthesized a novel deep-red fluorescent probe TCF-ClO for the determination of hypochlorous acid through theoretical analysis. The results showed that probe TCF-ClO exhibited excellent characteristics of long-wavelength emission (635 nm), fast response (< 1 min), and low detection limit (24 nM). In addition, it had been successfully used for imaging of HClO in living HeLa cells. More importantly, the TCF-ClO composited paper-based sensing material was successfully constructed. The RGB/gray value was obtained from a mobile phone and computer, which could achieve the quantitative detection of HClO, with a linear detection range of 0-50 µM and a detection limit of 1.09 µM (RGB mode)/3.38 µM (gray mode). The function of the paper-based sensor extended from qualitative to quantitative detection of HClO, and it is expected to become a portable device widely used in the environmental area.


Subject(s)
Fluorescent Dyes , Hypochlorous Acid , HeLa Cells , Humans , Hypochlorous Acid/analysis
9.
Org Lett ; 23(21): 8396-8401, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34694822

ABSTRACT

A tandem insertion of thiocyanate to enamine was performed for the regioselective synthesis of multisubstituted benzoimidazo[2,1-b]thiazoles. This method was shown to be effective in addressing the issue of isomerization encountered in common strategies. With a change made to the leading group on the aniline fragment of enamine, the reaction achieved different transformations, thus enabling multisubstituted benzo[4,5]imidazo[2,1-b]thiazoles and thiazoles in satisfactory yields.

10.
Anal Bioanal Chem ; 413(30): 7473-7483, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34647132

ABSTRACT

Glutathione and 2-aminopyridine are used as carbon sources to prepare carbon dots (CDs) by a one-step hydrothermal reaction. The results show that the average particle diameter of CDs is 8.64 nm with uniform size distribution and the fluorescence quantum yield is 13.62%. We further demonstrate that novel CDs possess highly selective sensing of Fe3+ from 0.2 to 200 µM with a low detection limit (0.194 µM). Meanwhile, the fluorescence of CDs can be repeated many times by the addition of S2-. Moreover, the CDs are used for biological imaging of living cells with well cell penetrability and low toxicity. Furthermore, it is successfully applied for anti-counterfeiting and information encryption. More interestingly, it can be doped with hydrogel and filter paper to prepare solid-phase sensors exhibiting high sensitivity and fast response, demonstrating their tremendous potential for the simple, rapid, and low-cost monitoring of Fe3+ and S2-.

11.
J Am Chem Soc ; 143(30): 11449-11461, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34292717

ABSTRACT

Radiosensitizers are agents capable of amplifying injury to tumor tissues by enhancing DNA damage and fortifying production of radical oxygen species (ROS). The use of such radiosensitizers in the clinic, however, remains limited by an insufficient ability to differentiate between cancer and normal cells and by the presence of a reversible glutathione system that can diminish the amount of ROS generated. Here, to address these limitations, we design an H2O2-responsive prodrug which can be premixed with lauric acid (melting point ∼43 °C) and loaded around the surface of silica-coated bismuth nanoparticles (BSNPs) for cancer-specific photoradiotherapy. Particularly, silica coating confers BSNPs with improved chemical stability against both near-infrared light and X-rays. Upon photothermal heating, lauric acid is melted to trigger prodrug release, followed by its transformation into p-quinone methide via H2O2 stimulation to irreversibly alkylate glutathione. Concurrently, this heat boosts tumor oxygenation and helps relieve the hypoxic microenvironment. Following sequential irradiation by X-rays, BSNPs generate plentiful ROS, which act in combination with these events to synergistically induce cell death via DNA breakage and mitochondria-mediated apoptosis pathways, ultimately enabling effective inhibition of tumor growth in vivo with high tumor specificity and reduced side effects. Collectively, this work presents a promising approach for the improvement of other ROS-responsive proalkylating agents, while simultaneously highlighting a robust nanosystem for combining these prodrugs with photoradiosensitizers to realize precision photoradiotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Bismuth/chemistry , Ferrous Compounds/pharmacology , Nanoparticles/chemistry , Photochemotherapy , Prodrugs/pharmacology , Silicon Dioxide/chemistry , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Death/drug effects , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Ferrous Compounds/chemistry , Humans , Infrared Rays , Molecular Structure , Prodrugs/chemistry , Reactive Oxygen Species/metabolism , Tumor Microenvironment/drug effects , X-Rays
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 257: 119764, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-33848953

ABSTRACT

Hydrogen sulfide (H2S) played crucial roles in biological processes and daily life, and the abnormal level of H2S was associated with many physiological processes. In this paper, we designed and developed a dicyanomethylene-4H-chromene (DCM)-based near-infrared (NIR) fluorescent probe DCM-NO guided by theoretical calculation. The probe displayed excellent selectivity towards H2S with a fast response time (3 min) and low detection limit (fluorescence 25.3 nM/absorption 6.61 nM) in Hela cells and real water samples. Furthermore, the probe-doped solid sensing materials (test strips and nanofibrous films) exhibited specific visualization of H2S under ambient light or hand-held UV lamp, providing great potential for on-site and real-time application in environmental and biological systems.


Subject(s)
Hydrogen Sulfide , Nanofibers , Fluorescent Dyes , HeLa Cells , Humans
13.
ACS Sens ; 6(3): 628-640, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33475340

ABSTRACT

Drug-induced liver injury (DILI) is a persistent concern in drug discovery and clinical medicine. The current clinical methods to assay DILI by analyzing the enzymes in serum are still not optimal. Recent studies showed that fluorescent sensors would be efficient tools for detecting the concentration and distribution of DILI indicators with high sensitivity and specificity, in real-time, in situ, and with low damage to biosamples, as well as diagnosing DILI. This review focuses on the assessment of DILI, introduces the current mechanisms of DILI, and summarizes the design strategies of fluorescent sensors for DILI indicators, including ions, small molecules, and related enzymes. Some challenges for developing DILI diagnostic fluorescent sensors are put forward. We believe that these design strategies and challenges to evaluate DILI will inspire chemists and give them opportunities to further develop other fluorescent sensors for accurate diagnoses and therapies for other diseases.


Subject(s)
Chemical and Drug Induced Liver Injury , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury/etiology , Humans
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 249: 119217, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33257243

ABSTRACT

Specifically, visually, and quantitatively monitor copper ion (Cu2+) is critical in the area of biological and environmental detection. Herein, a ratiometric fluorescent probe with benzoxazole appended xanthenes skeleton was constructed and further employed to monitor Cu2+ in Hela cells, real water samples, and test strips. An easily distinguishable colorimetric (colorless to red) and fluorescence (green to red) change could be observed by naked eye under the portable UV lamp (365 nm) and the changes could be recovered by adding S2-. Furthermore, electrospinning technique was employed to fabricate a probe composited fluorescent sensing film (PMMA) for realizing the visual and recyclable monitoring of Cu2+, indicating that the probe-composited fluorescent sensing film has great potential for on-site and naked-eye detection of Cu2+ in practical.


Subject(s)
Copper , Fluorescent Dyes , Colorimetry , HeLa Cells , Humans , Spectrometry, Fluorescence
15.
ACS Sens ; 6(1): 54-62, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33301300

ABSTRACT

Heart failure is the terminal stage of many cardiovascular diseases and is considered to be closely related to oxidative stress. Early understanding of pathogenesis can greatly improve the treatment and reduce the mortality of heart disease. In this work, based on the analysis of coumarin derivates by theoretical calculations, we designed and synthesized a fluorescent probe BCO with a large Stokes shift (107 nm) and excellent selectivity toward H2O2 in a living system. The distribution of H2O2 in the heart and thoracic aorta tissues was imaged with the aid of the probe BCO, which demonstrated that the cellular H2O2 level is upregulated in heart failure. This work provides a useful tool, BCO, for the evaluation of cellular oxidative stress and to further understand the pathophysiology process of heart disease.


Subject(s)
Fluorescent Dyes , Heart Failure , Humans , Hydrogen Peroxide , Microscopy, Confocal , Oxidative Stress
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 246: 119041, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33080512

ABSTRACT

Glutathione (GSH) is one of the most essential bio-thiols to maintain the redox balance of organisms which is strongly associated with many physiological processes. Detecting the concentration and mapping the distribution of GSH in the living system is significant to study many related diseases. In this work, we have successfully constructed an ICT-based model to guide the design and synthesis of GSH specific fluorescent probe CF1. A serials spectroscopy test demonstrated that the response of CF1 towards GSH owned large stokes shift (~167 nm) and an excellent linear relationship (0-120 µM, R2 = 0.9961). Furthermore, CF1 was successfully applied to image endogenous GSH in different cell lines with high sensitivity. This work is instructive for the oriented synthesis of ICT-based functional fluorescent probe and the further visualization of intracellular targets in the living system.


Subject(s)
Fluorescent Dyes , Glutathione , Cell Line
17.
ACS Appl Mater Interfaces ; 11(36): 32605-32612, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31423764

ABSTRACT

Drug-induced hepatotoxicity is the main cause of acute liver injury, and its early diagnosis is indispensable in pharmacological and pathological studies. As a hepatotoxicity indicator, the GSH distribution in the liver could reflect the damage degree in situ. In this work, we have provided a theoretical design strategy to determine the generation of photo-induced electron transfer mechanism and achieve high selectivity for the target. After that, we precisely synthesized a novel near-infrared fluorescent probe BSR1 to specifically monitor endogenous GSH and hepatotoxicity in biosystem with a moderate fluorescent quantum yield (Φ = 0.394) and low detection limit (83 nM) under this strategy. Moreover, this mapping method for imaging GSH depletion in vivo to assay hepatotoxicity may provide a powerful molecular tool for early diagnosis of some diseases and contribute to assay hepatotoxicity for the development of new drugs. Importantly, this theoretical calculation-guided design strategy may provide an effective way for the precise synthesis of the target-specific fluorescent probe and change this research area from "trial-and-error" to concrete molecular engineering.


Subject(s)
Chemical and Drug Induced Liver Injury/pathology , Fluorescent Dyes/chemical synthesis , Glutathione/analysis , Liver/pathology , Models, Theoretical , Animals , Cell Line , Disease Models, Animal , Fluorescent Dyes/chemistry , Humans , Mice , Optical Phenomena , Spectrometry, Fluorescence
18.
Chem Sci ; 9(42): 8065-8070, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30542554

ABSTRACT

Glutathione (GSH) plays an important role in the body's biochemical defense system, and the detection of GSH in a physiological system is an important tool for understanding redox homeostasis. Protection-deprotection strategies have proven to be the most reliable, among existing detection methods. However, the understanding of how various electronic and steric effects influence a probe's ability to recognize a substrate is still lacking. In this study, we have analyzed various substituent effects on a GSH probe template via theoretical calculations and constructed the performance regulation and control strategy for this kind of probe. We then developed a series of guided probes using eighteen different acrylic ester derivatives to mask the fluorescence of fluorescein. The optical performance differences between the guided probes strongly supported the applicability of our proposed guiding strategy. Moreover, the positively guided probes are excellent for imaging GSH distribution in living cells and mice.

19.
Anal Chem ; 88(22): 11253-11260, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27780356

ABSTRACT

A broad-spectrum fluorescent probe, which can be applied to monitoring H2S in various biological systems, has been rationally designed and synthesized. This specific probe was applied to localize the endogenous H2S in living Raw264.7 macrophage cells, HepG2 cells, and H9C2 cells. At the same time, the probe has successfully visualized CBS- and CSE-induced endogenous H2S production and monitored CBS and CSE activity in H9C2 cells. This probe could serve as a powerful molecular imaging tool to further explore the physiological function and the molecular mechanisms of endogenous H2S in living animal systems.


Subject(s)
Fluorescein/chemistry , Fluorescent Dyes/chemistry , Hydrogen Sulfide/blood , Optical Imaging , Animals , Cell Line , Fluorescein/chemical synthesis , Fluorescent Dyes/chemical synthesis , Hep G2 Cells , Humans , Mice , Mice, Inbred Strains , Molecular Structure , Quantum Theory , RAW 264.7 Cells , Rats , Spectrometry, Fluorescence
20.
Sci Rep ; 6: 28972, 2016 08 03.
Article in English | MEDLINE | ID: mdl-27485974

ABSTRACT

A series of Cu(2+) probe which contains 9 probes have been synthesized and established. All the probes were synthesized using Rhodamine B as the fluorophore, conjugated to various differently substituted cinnamyl aldehyde with C=N Schiff base structural motif as their core moiety. The structure-property relationships of these probes have been investigated. The change of optical properties, caused by different electronic effect and steric effect of the recognition group, has been analyzed systematically. DFT calculation simulation of the Ring-Close and Ring-Open form of all the probes have been employed to illuminate, summarize and confirm these correlations between optical properties and molecular structures. In addition, biological experiment demonstrated that all the probes have a high potential for both sensitive and selective detection, mapping of adsorbed Cu(2+) both in vivo and environmental microbial systems. This approach provides a significant strategy for studying structure-property relationships and guiding the synthesis of probes with various optical properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...