Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Open Respir Res ; 10(1)2023 07.
Article in English | MEDLINE | ID: mdl-37524522

ABSTRACT

BACKGROUND: Hypoxaemia plays an important role in the development of pulmonary artery hypertension (PAH). Patients with acute respiratory distress syndrome (ARDS) in a high-altitude area have different pathophysiological characteristics from those patients in the plains. The goal of our study was to explore the clinical characteristics of PAH secondary to ARDS in a high-altitude area. METHODS: This was a prospective study conducted in the affiliated Hospital of Qinghai University. Two investigators independently assessed pulmonary artery pressure (PAP) and right ventricular function by transthoracic echocardiography. Basic information and clinical data of the patients who were enrolled were collected. A multivariable logistic regression model was used to evaluate the risk factors for PAH secondary to ARDS in the high-altitude area. RESULTS: The incidence of PAH secondary to ARDS within 48 hours in the high-altitude area was 44.19%. Partial pressure of oxygen/fraction of inspired oxygen <165.13 mm Hg was an independent risk factor for PAH secondary to ARDS in the high-altitude area. Compared with the normal PAP group, the right ventricular basal dimensions were significantly larger and the right ventricular tricuspid annular plane systolic excursion was lower in the PAH group (right ventricular basal dimensions: 45.47±2.60 vs 40.67±6.12 mm, p=0.019; tricuspid annular plane systolic excursion (TAPSE): 1.82±0.40 vs 2.09±0.32 cm, p=0.021). The ratio of TAPSE to systolic PAP was lower in the PAH group (0.03±0.01 vs 0.08±0.03 cm/mm Hg, p<0.001). CONCLUSIONS: The incidence of PAH in patients with ARDS in our study is high. PAH secondary to ARDS in a high-altitude area could cause right ventricular dysfunction. TRIAL REGISTRATION NUMBER: NCT05166759.


Subject(s)
Hypertension , Respiratory Distress Syndrome , Humans , Altitude , Hypertension/complications , Oxygen , Prospective Studies , Pulmonary Artery/diagnostic imaging , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/etiology
2.
Front Med (Lausanne) ; 8: 637747, 2021.
Article in English | MEDLINE | ID: mdl-34355001

ABSTRACT

Background: Different positive end-expiratory pressure (PEEP) strategies are available for subjects with coronavirus disease 2019 (COVID-19)-induced acute respiratory distress syndrome (ARDS) requiring invasive mechanical ventilation. We aimed to evaluate three conventional PEEP strategies on their effects on respiratory mechanics, gas exchanges, and hemodynamics. Methods: This is a prospective, physiologic, multicenter study conducted in China. We recruited 20 intubated subjects with ARDS and confirmed COVID-19. We first set PEEP by the ARDSnet low PEEP-fraction of inspired oxygen (FIO2) table. After a recruitment maneuver, PEEP was set at 15, 10, and 5 cm H2O for 10 min, respectively. Among these three PEEP levels, best-compliance PEEP was the one providing the highest respiratory system compliance; best-oxygenation PEEP was the one providing the highest PaO2 (partial pressure of arterial oxygen)/FIO2. Results: At each PEEP level, we assessed respiratory mechanics, arterial blood gas, and hemodynamics. Among three PEEP levels, plateau pressure, driving pressure, mechanical power, and blood pressure improved with lower PEEP. The ARDSnet low PEEP-FIO2 table and the best-oxygenation strategies provided higher PEEP than the best-compliance strategy (11 ± 6 cm H2O vs. 11 ± 3 cm H2O vs. 6 ± 2 cm H2O, p = 0.001), leading to higher plateau pressure, driving pressure, and mechanical power. The three PEEP strategies were not significantly different in gas exchange. The subgroup analysis showed that three PEEP strategies generated different effects in subjects with moderate or severe ARDS (n = 12) but not in subjects with mild ARDS (n = 8). Conclusions: In our cohort with COVID-19-induced ARDS, the ARDSnet low PEEP/FIO2 table and the best-oxygenation strategies led to higher PEEP and potentially higher risk of ventilator-induced lung injury than the best-compliance strategy. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT04359251.

SELECTION OF CITATIONS
SEARCH DETAIL
...