Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5766, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37723156

ABSTRACT

Localized interlayer excitons (LIXs) in two-dimensional moiré superlattices exhibit sharp and dense emission peaks, making them promising as highly tunable single-photon sources. However, the fundamental nature of these LIXs is still elusive. Here, we show the donor-acceptor pair (DAP) mechanism as one of the origins of these excitonic peaks. Numerical simulation results of the DAP model agree with the experimental photoluminescence spectra of LIX in the moiré MoSe2/WSe2 heterobilayer. In particular, we find that the emission energy-lifetime correlation and the nonmonotonic power dependence of the lifetime agree well with the DAP IX model. Our results provide insight into the physical mechanism of LIX formation in moiré heterostructures and pave new directions for engineering interlayer exciton properties in moiré superlattices.

2.
Nanoscale ; 14(45): 17036-17043, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36367106

ABSTRACT

Inversion symmetry breaking plays a critical role in the formation of magnetic skyrmions. Therefore, for the application of skyrmion-based devices, it is important to develop novel engineering techniques and explore new non-centrosymmetric lattices. In this paper, we report the rational synthesis of stable γ-phase MnS1-xSex (0 ≤ x ≤ 0.45) nanoflakes with an asymmetric distribution of the elemental content, which persists on inversion symmetry breaking. The temperature dependence of resonant second-harmonic generation characterization reveals that a non-centrosymmetric crystal structure exists in our as-grown γ-phase MnS1-xSex with spatial-inversion symmetry breaking. By tuning the parameters of nucleation temperature and growth time, we produced a detailed growth phase diagram, revealing a controllable as-grown structure evolution from γ-phase wurtzite-type to α-phase rock-salt type structure of MnS1-xSex nanoflakes. Our work provides a new playground to explore novel materials that have broken inversion symmetry.

3.
J Phys Chem Lett ; 13(4): 1114-1122, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35080395

ABSTRACT

Direct assembly of high-quality single-crystal perovskite microarrays on transparent conductive substrates and carrier injection layers is vital to realize high-performance optoelectronic devices. Although cubic-phase CsPbBr3 is considered to have a higher structural and optical quality than the orthorhombic one, obtaining a well-aligned assembly directly on the aforementioned substrates is still challenging. Here we developed a solvent-assisted crystallization strategy with the assistance of surface modifiers, through which the in situ low-temperature growth of well-aligned cubic single-crystal CsPbBr3 microarray with a preferential out-of-plane [100] orientation is achieved for the first time on commercial transparent conductive substrates. As compared with the control orthorhombic samples, the cubic CsPbBr3 single crystals possess superior properties including a higher photoluminescence internal quantum efficiency, fewer defect states, a weaker scattering by phonons, and an appearance of lasing. The results presented here can pave the way for future design and applications of optoelectronic devices based on perovskite microarrays.

SELECTION OF CITATIONS
SEARCH DETAIL
...