Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Lett ; 31(10): 1537-43, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19557310

ABSTRACT

Microbial fuel cells can be designed to remove nitrogenous compounds out of wastewater, but their performance is at present limited to 0.33 kg NO(3) (-)-Nm(-3) net cathode compartment (NCC) d(-1). By maintaining the pH in the cathode at 7.2, nitrogen removal was increased from 0.22 to 0.50 kg NO(3) (-)-Nm(-3) NCC d(-1). Bio-electrochemical active microorganisms seem to struggle with the deterioration of their own environment due to slow proton fluxes. Therefore, the results suggest that an appropriate pH adjustment strategy is necessary to allow a sustained and enhanced biological activity in bio-electrochemical systems.


Subject(s)
Bioelectric Energy Sources , Nitrogen/metabolism , Water Microbiology , Electricity , Hydrogen-Ion Concentration
2.
Water Sci Technol ; 58(10): 1941-6, 2008.
Article in English | MEDLINE | ID: mdl-19039173

ABSTRACT

Perchlorate is widely used as a propellant in the aerospace and defense industries, and is of environmental concern due to its high mobility and inhibiting effect on thyroid function. An ideal treatment approach is bioreduction to chloride via dissimilatory perchlorate-reducing bacteria (PCRB). PCRB are ubiquitous in the environment, and are mainly facultative anaerobes and denitrifiers. Previous research suggests that PCRB may grow using a cathode as an electron donor, although this research was performed in a half cell with exogenous electron shuttles. We investigated a functioning MFC with a denitrifying biocathode for perchlorate reduction, as a means to confirm the existence of biocathode-utilizing PCRB and the possibility of perchlorate remediation without added shuttles. The biocathode was initially run with 20 mgN/L nitrate. The perchlorate concentration was increased stepwise from 0.1 mg/L to 20 mg/L, while the nitrate concentration was decreased from 20 mgN/L to 5 mgN/L. The maximum perchlorate removal was 12 mg/L-d, contributing 64% to the 0.28 mA produced by the cell. Given the lack of soluble electron donor in the medium, the extent of perchlorate reduction, and the improvement of perchlorate reduction over time, these tests strongly suggest PCRB are utilizing the cathode as an electron donor without exogenous electron shuttles.


Subject(s)
Nitrogen/metabolism , Perchlorates/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Electricity , Electrodes , Nitrates/isolation & purification , Oxidation-Reduction , Perchlorates/isolation & purification , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...