Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 12914, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32737392

ABSTRACT

Species-specific monitoring through large shark fin market surveys has been a valuable data source to estimate global catches and international shark fin trade dynamics. Hong Kong and Guangzhou, mainland China, are the largest shark fin markets and consumption centers in the world. We used molecular identification protocols on randomly collected processed fin trimmings (n = 2000) and non-parametric species estimators to investigate the species composition of the Guangzhou retail market and compare the species diversity between the Guangzhou and Hong Kong shark fin retail markets. Species diversity was similar between both trade hubs with a small subset of species dominating the composition. The blue shark (Prionace glauca) was the most common species overall followed by the CITES-listed silky shark (Carcharhinus falciformis), scalloped hammerhead shark (Sphyrna lewini), smooth hammerhead shark (S. zygaena) and shortfin mako shark (Isurus oxyrinchus). Our results support previous indications of high connectivity between the shark fin markets of Hong Kong and mainland China and suggest that systematic studies of other fin trade hubs within Mainland China and stronger law-enforcement protocols and capacity building are needed.


Subject(s)
Marketing , Seafood , Sharks/classification , Sharks/genetics , Animals , Hong Kong
2.
Mar Pollut Bull ; 157: 111281, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32469749

ABSTRACT

Shark fin is one of Asia's most valued dried seafood products, with over 80 shark species traded in Hong Kong [HK]. We analyzed processed shark fins from mainland China and HK markets (n = 267) for mercury, methyl­mercury, and arsenic, to inform consumers, policy makers and public health officials on the health risks of ingesting fins from nine of the most common shark species in the fin trade. Fins from all species frequently exceed Hg limits established by HK authorities. Most of the mercury found is in the form of methyl­mercury (69.0 ± 33.5%). Five species surpass methyl­mercury PTWIs and blue shark fins can exceed inorganic arsenic BMDL0.5. Species-of-origin was a significant predictor of heavy metal concentrations, with higher mercury concentrations associated with coastal sharks and lower arsenic levels found with increasing shark trophic level. Species-specific labeling would help consumers avoid shark fin products that pose the highest health risk.


Subject(s)
Arsenic , Mercury/analysis , Sharks , Animals , China , Hong Kong , Seafood/analysis
3.
Conserv Biol ; 32(2): 376-389, 2018 04.
Article in English | MEDLINE | ID: mdl-29077226

ABSTRACT

The shark fin trade is a major driver of shark exploitation in fisheries all over the world, most of which are not managed on a species-specific basis. Species-specific trade information highlights taxa of particular concern and can be used to assess the efficacy of management measures and anticipate emerging threats. The species composition of the Hong Kong Special Administrative Region of China, one of the world's largest fin trading hubs, was partially assessed in 1999-2001. We randomly selected and genetically identified fin trimmings (n = 4800), produced during fin processing, from the retail market of Hong Kong in 2014-2015 to assess contemporary species composition of the fin trade. We used nonparametric species estimators to determine that at least 76 species of sharks, batoids, and chimaeras supplied the fin trade and a Bayesian model to determine their relative proportion in the market. The diversity of traded species suggests species substitution could mask depletion of vulnerable species; one-third of identified species are threatened with extinction. The Bayesian model suggested that 8 species each comprised >1% of the fin trimmings (34.1-64.2% for blue [Prionace glauca], 0.2-1.2% for bull [Carcharhinus leucas] and shortfin mako [Isurus oxyrinchus]); thus, trade was skewed to a few globally distributed species. Several other coastal sharks, batoids, and chimaeras are in the trade but poorly managed. Fewer than 10 of the species we modeled have sustainably managed fisheries anywhere in their range, and the most common species in trade, the blue shark, was not among them. Our study and approach serve as a baseline to track changes in composition of species in the fin trade over time to better understand patterns of exploitation and assess the effects of emerging management actions for these animals.


Subject(s)
Sharks , Animals , Bayes Theorem , China , Conservation of Natural Resources , Hong Kong , Male , Surveys and Questionnaires
4.
PLoS One ; 12(10): e0185368, 2017.
Article in English | MEDLINE | ID: mdl-29020095

ABSTRACT

Protecting sharks from overexploitation has become global priority after widespread population declines have occurred. Tracking catches and trade on a species-specific basis has proven challenging, in part due to difficulties in identifying processed shark products such as fins, meat, and liver oil. This has hindered efforts to implement regulations aimed at promoting sustainable use of commercially important species and protection of imperiled species. Genetic approaches to identify shark products exist but are typically based on sequencing or amplifying large DNA regions and may fail to work on heavily processed products in which DNA is degraded. Here, we describe a novel multiplex PCR mini-barcode assay based on two short fragments of the cytochrome oxidase I (COI) gene. This assay can identify to species all sharks currently listed on the Convention of International Trade of Endangered Species (CITES) and most shark species present in the international trade. It achieves species diagnosis based on a single PCR and one to two downstream DNA sequencing reactions. The assay is capable of identifying highly processed shark products including fins, cooked shark fin soup, and skin-care products containing liver oil. This is a straightforward and reliable identification method for data collection and enforcement of regulations implemented for certain species at all governance levels.


Subject(s)
Commerce , DNA Barcoding, Taxonomic/methods , Internationality , Polymerase Chain Reaction/methods , Sharks/genetics , Animal Fins/physiology , Animals , China , DNA/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...