Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Food Prot ; 86(1): 100024, 2023 01.
Article in English | MEDLINE | ID: mdl-36916591

ABSTRACT

Human norovirus (HuNoV) has been implicated as the leading cause of foodborne illness worldwide. The ability of HuNoV to persist in water can significantly impact food safety as agriculture and processing water could serve as vehicles of virus transmission. This study focused on the persistence and infectivity of the HuNoV surrogate viruses, murine norovirus (MNV), and Tulane virus (TV), after prolonged storage in diverse environmental water types currently used for agricultural irrigation. In this study, vegetable processing water (VW), brackish tidal surface water (SW), municipal reclaimed water (RW), and pond water (PW) were inoculated with each virus in a 1:10 v/v ratio containing virus at 3.5-4.5 logPFU/mL and stored at 16°C for 100 days. This time and temperature combination was chosen to mimic growing and harvest conditions in the mid-Atlantic area of the United States. Samples were then assayed for the presence of viral RNA using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) approximately weekly throughout the study. Persistence of MNV and TV was not significantly different (p > 0.05) from one another in any water sample (n = 7) or the control (HBSS). However, there was variability observed in viral persistence across water samples with significant differences observed between several water samples. The presence of intact viral capsids enclosing the genomes of MNV and TV were evaluated by an RNase assay coupled with RT-qPCR on specific timepoints and determined to be intact up to and at 100 days after inoculation. TV was also shown to remain infectious in a cell culture assay (TCID50) up to 100 days of incubation. These findings are significant in that the potential for not only detection of enteric viruses can occur long after a contamination event occurs but these viruses may also remain infectious.


Subject(s)
Norovirus , Humans , Animals , Mice , Food Contamination , Food Microbiology , Temperature , Water
2.
Sci Total Environ ; 830: 154619, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35306079

ABSTRACT

Wastewater surveillance has been a useful tool complementing clinical testing during the COVID-19 pandemic. However, transitioning surveillance approaches to small populations, such as dormitories and assisted living facilities poses challenges including difficulties with sample collection and processing. Recently, the need for reliable and timely data has coincided with the need for precise local forecasting of the trajectory of COVID-19. This study compared wastewater and clinical data from the University of Delaware (Fall 2020 and Spring 2021 semesters), and evaluated wastewater collection practices for enhanced virus detection sensitivity. Fecal shedding of SARS-CoV-2 is known to occur in infected individuals. However, shedding concentrations and duration has been shown to vary. Therefore, three shedding periods (14, 21, and 30 days) were presumed and included for analysis of wastewater data. SARS-CoV-2 levels detected in wastewater correlated with clinical virus detection when a positive clinical test result was preceded by fecal shedding of 21 days (p< 0.05) and 30 days (p < 0.05), but not with new cases (p = 0.09) or 14 days of shedding (p = 0.17). Discretely collected wastewater samples were compared with 24-hour composite samples collected at the same site. The discrete samples (n = 99) were composited examining the influence of sampling duration and time of day on SARS-CoV-2 detection. SARS-CoV-2 detection varied among dormitory complexes and sampling durations of 3-hour, 12-hour, and 24-hour (controls). Collection times frequently showing high detection values were between the hours of 03:00 to 05:00 and 23:00 to 08:00. In each of these times of day 33% of samples (3/9) were significantly higher (p < 0.05) than the control sample. The remainder (6/9) of the collection times (3-hour and 12-hour) were not different (p > 0.05) from the control. This study provides additional framework for continued methodology development for microbiological wastewater surveillance as the COVID-19 pandemic progresses and in preparation for future epidemiological efforts.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Pandemics , Students , Universities , Wastewater , Wastewater-Based Epidemiological Monitoring
3.
Article in English | MEDLINE | ID: mdl-34594466

ABSTRACT

One Health concepts were incorporated in a foodborne disease outbreak investigation with game features of data presented as visual and manipulative clues. Postsecondary pre-veterinary medicine and animal biosciences students and food science students (n = 319) enrolled in an introductory animal and food sciences course over a 3-year period received a brief introduction to foodborne illness, an outbreak scenario, and investigative tasks to complete individually or in groups. Tasks addressed epidemiology, laboratory, environment, traceback, recall, and prevention concepts. Gamification of the exercise involved generation of a numerical code to unlock a combination lock as an indication of successful organization, compilation, and interpretation of data. Students presented investigation findings and responses to critical thought questions on their roles. Student surveys on engagement and self-perceived change in conceptual understanding indicated that nearly all expressed increased understanding of outbreak investigations, safe food production, and environmental water as a transmission vehicle. Volunteered learned concepts indicated enhanced appreciation for the complexity of food safety and interdisciplinary connections. Students enjoyed the exercise (92%) and cited the clues and group interaction among the most enjoyable features. Objective assessment of student conceptual learning with the subset of students who conducted the investigation individually (n = 58) demonstrated significant increase in correct test responses (49% pretest; 76% posttest) after completion of the investigation for all questions combined and across all learning objectives. These data demonstrate the value of a foodborne disease investigation with escape room gamification features for engaging students in One Health concepts and exercising problem-solving, critical thinking, and skills for independent and collaborative work.

4.
Methods Protoc ; 4(2)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065842

ABSTRACT

The COVID-19 pandemic is a global crisis and continues to impact communities as the disease spreads. Clinical testing alone provides a snapshot of infected individuals but is costly and difficult to perform logistically across whole populations. The virus which causes COVID-19, SARS-CoV-2, is shed in human feces and urine and can be detected in human waste. SARS-CoV-2 can be shed in high concentrations (>107 genomic copies/mL) due to its ability to replicate in the gastrointestinal tract of humans through attachment to the angiotensin-converting enzyme 2 (ACE-2) receptors there. Monitoring wastewater for SARS-CoV-2, alongside clinical testing, can more accurately represent the spread of disease within a community. This protocol describes a reliable and efficacious method to recover SARS-CoV-2 in wastewater, quantify genomic RNA levels, and evaluate concentration fluctuations over time. Using this protocol, viral levels as low as 10 genomic copies/mL were successfully detected from 30 mL of wastewater in more than seven-hundred samples collected between August 2020 and March 2021. Through the adaptation of traditional enteric virus methods used in food safety research, targets have been reliably detected with no inhibition of detection (RT-qPCR) observed in any sample processed. This protocol is currently used for surveillance of wastewater systems across New Castle County, Delaware.

5.
J Food Prot ; 84(3): 418-423, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33125048

ABSTRACT

ABSTRACT: Plant-derived proteases, bromelain, papain, and ficin, are broad-acting enzymes with generally recognized as safe status for foods and have current application in several food industries. These proteases have also been reported to have antimicrobial properties. This study investigated the efficacy of commercially prepared bromelain, papain, and ficin, individually and combined (2,500 ppm of crude extract), for inactivation of hepatitis A virus (HAV) and human norovirus surrogates, Tulane virus (TV), and murine norovirus (MNV). Various treatment temperatures (45, 50, or 55°C), times (10 or 60 min), and pH values (5.5 or 7.0) in the presence of cysteine (2 mM) were evaluated. Inactivation was assessed by infectivity in plaque assay for TV and MNV and by median tissue culture infective dose for HAV. No reduction in infectious TV or HAV was attributed to the plant-derived proteases at any of the conditions tested. Infectious MNV was reduced by 1 to 3 log PFU/mL; the most effective treatment was bromelain at pH 7 and 50°C for 10 min. A time course study with MNV in bromelain at 50°C indicated that a 2-log PFU/mL reduction could be achieved within 6 min, but extended treatment of 15 min was still insufficient to eliminate infectious MNV. The lack of or limited efficacy of bromelain, papain, and ficin on HAV, TV, and MNV, even at elevated temperatures and exposure times, suggests the plant-derived proteases are not commercially applicable for inactivation of virus on commodities or materials that could not also withstand mild heat treatment. The variable susceptibilities observed between TV and MNV illustrate limitations in utilization of surrogates for predicting pathogen behavior for a structure-specific treatment.


Subject(s)
Hepatitis A virus , Norovirus , Peptide Hydrolases , Temperature , Virus Inactivation
6.
J Food Prot ; 83(4): 661-667, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32221571

ABSTRACT

Noroviruses encounter numerous and diverse bacterial populations in the host and environment, but the impact of bacteria on norovirus transmission, infection, detection, and inactivation are not well understood. Tulane virus (TV), a human norovirus surrogate, was exposed to viable bacteria, bacterial metabolic products, and bacterial cell constituents and was evaluated for impact on viral recovery, propagation, and inactivation resistance, respectively. TV was incubated with common soil, intestinal, skin, and phyllosphere bacteria, and unbound viruses were recovered by centrifugation and filtration. TV recovery from various bacterial suspensions was not impeded, which suggests a lack of direct, stable binding between viruses and bacteria. The cell-free supernatant (CFS) of Bifidobacterium bifidum 35914, a bacterium that produces glycan-modifying enzymes, was evaluated for effect on the propagation of TV in LLC-MK2 cells. CFS did not limit TV propagation relative to TV absent of CFS. The impact of Escherichia coli O111:B4 lipopolysaccharide (LPS) and Bacillus subtilis peptidoglycan (PEP) on TV thermal and chlorine inactivation resistance was evaluated. PEP increased TV thermal and chlorine inactivation resistance compared with control TV in phosphate-buffered saline (PBS). TV suspended in PBS and LPS was reduced by more than 3.7 log at 60°C, whereas in PEP, TV reduction was approximately 2 log. Chlorine treatment (200 ppm) rendered TV undetectable (>3-log reduction) in PBS and LPS; however, TV was still detected in PEP, reduced by 2.9 log. Virus inactivation studies and food processing practices should account for potential impact of bacteria on viral resistance.


Subject(s)
Norovirus , Bacterial Physiological Phenomena , Food Microbiology , Humans , Norovirus/pathogenicity , Norovirus/physiology , Virus Inactivation , Viruses
7.
J Food Prot ; 81(9): 1432-1438, 2018 09.
Article in English | MEDLINE | ID: mdl-30080120

ABSTRACT

Viral contamination can compromise the safety of water utilized for direct consumption, produce irrigation, and postharvest washing of produce. Zero-valent iron (ZVI) is used commercially for chemical remediation of water and has been demonstrated to remove some biological contaminants from water in laboratory and field studies. This study investigated the efficacy of ZVI to remove human norovirus surrogates, Tulane virus (TV) and murine norovirus (MNV), from water and to characterize the reversibility and nature of viral association with ZVI. Genomic material of TV and MNV recovered from the effluent of inoculated water treatment columns containing a 1:1 mixture of ZVI and sand was 2 and 3 log, respectively, less than that recovered from the effluent of treatment columns containing only sand. Elution buffers (citrate buffers, pH 4 and 7, and virus elution buffer, pH 9.5, with and without added 1 M NaCl) did not increase recovery of infectious TV and MNV from ZVI as compared with elution with water alone. TV-inoculated lettuce washed with water in the presence of ZVI yielded 1.5 to 2 log fewer infectious TV from washwater as compared with lettuce washed with water alone or in the presence of sand. These data demonstrate the enhanced removal of human norovirus surrogates, TV and MNV, from water by ZVI and provide indications that unrecovered viruses are not readily disassociated from ZVI by buffers of various pH and ionic strength. These findings warrant further investigation into larger-scale simulations of water remediation of viral contaminants for potential application in the treatment of water used for drinking, irrigation, and food processing.


Subject(s)
Foodborne Diseases/virology , Norovirus , Water Microbiology , Water Purification , Animals , Food Handling , Food Microbiology , Humans , Iron , Lactuca , Mice , Norovirus/growth & development , Species Specificity
8.
J Food Prot ; 79(5): 764-70, 2016 05.
Article in English | MEDLINE | ID: mdl-27296423

ABSTRACT

Whole and cut cantaloupes have been implicated as vehicles in foodborne illness outbreaks of norovirus, salmonellosis, and listeriosis. Preparation methods that minimize pathogen transfer from external surfaces to the edible tissue are needed. Two preparation methods were compared for the transfer of Listeria monocytogenes, Salmonella enterica serovar Typhimurium LT2, murine norovirus, and Tulane virus from inoculated cantaloupe rinds to edible tissue and preparation surfaces. For the first method, cantaloupes were cut into eighths, and edible tissue was separated from the rind and cubed with the same knife used to open the cantaloupes. For the second method, cantaloupes were scored with a knife around the circumference sufficient to allow manual separation of the cantaloupes into halves. Edible tissue was scooped with a spoon and did not contact the preparation surface touched by the rind. Bacteria and virus were recovered from the rinds, preparation surfaces, and edible tissue and enumerated by culture methods and reverse transcription, quantitative PCR, respectively. Standard plate counts were determined throughout refrigerated storage of cantaloupe tissue. Cut method 2 yielded approximately 1 log lower recovery of L. monocytogenes and Salmonella Typhimurium from edible tissue, depending on the medium in which the bacteria were inoculated. A slight reduction was observed in murine norovirus recovered from edible tissue by cut method 2. The Tulane virus was detected in approximately half of the sampled cantaloupe tissue and only at very low levels. Aerobic mesophilic colony counts were lower through day 6 of storage for buffered peptone water-inoculated cantaloupes prepared by cut method 2. No differences were observed in environmental contamination as a function of cutting method. Although small reductions in contamination of edible tissue were observed for cut method 2, the extent of microbial transfer underscores the importance of preventing contamination of whole cantaloupes.


Subject(s)
Cucumis melo/microbiology , Food Handling , Animals , Colony Count, Microbial , Consumer Product Safety , Food Microbiology , Mice
9.
J Food Prot ; 77(1): 145-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24406013

ABSTRACT

Bacterial metabolic products were evaluated for inhibitory effects on viral propagation in cell culture. Cell-free supernatants (CFS) were prepared from growth of Enterococcus faecalis ATCC 19433, Pseudomonas fluorescens ATCC 13525, Escherichia coli 08, Staphylococcus epidermidis ATCC 12228, Bacillus subtilis 168, Bacillus coagulans 185A, B. coagulans 7050, Clostridium sporogenes PA3679, and a commercial probiotic mixture of Lactobacillus acidophilus, Lactobacillus rhamnosus, Bifidobacterium bifidum, Lactobacillus salivarius, and Streptococcus thermophilus in microbiological medium or milk. The inhibitory effects of CFS on the propagation of murine norovirus 1 and Tulane virus in RAW 264.7 and LLCMK2 cells, respectively, were evaluated in the continuous presence of CFS or after exposure of host cells to CFS. Slight inhibition of viral propagation was observed for murine norovirus and Tulane virus in the continuous presence of CFS of B. subtilis 168 and E. faecalis 19433, respectively. CFS cytotoxicity was also determined by microscopic examination. Virus persisted in the CFS that demonstrated cytotoxic effects, suggesting a lack of direct effect of CFS on virions. The viral propagation indicates a general lack of competitive inhibition by bacterial extracellular products and bears significance in understanding the persistence of virus in food and human systems shared by bacteria that are recognized for their colonization and competitive capabilities.


Subject(s)
Norovirus/pathogenicity , Animals , Bacillus/chemistry , Bacillus/physiology , Bifidobacterium/chemistry , Bifidobacterium/physiology , Cell Fractionation , Enterococcus faecalis/chemistry , Enterococcus faecalis/physiology , Escherichia coli/chemistry , Escherichia coli/physiology , Humans , Lactobacillus/chemistry , Lactobacillus/physiology , Mice , Norovirus/growth & development
10.
J Food Prot ; 74(5): 751-8, 2011 May.
Article in English | MEDLINE | ID: mdl-21549045

ABSTRACT

Vibrio parahaemolyticus ATCC 43996 was grown at 15°C for 53 h, 20°C for 24 h, 25°C for 12 h, 30°C for 9 h, 35°C for 9 h, or 40°C for 6 h to early stationary phase. Oyster meats were blended, autoclaved at 121°C for 15 min, inoculated with V. parahaemolyticus, and pressure treated at 250 MPa for 2 and 3 min and at 300 MPa for 1 and 2 min at 21°C. Overall, growth temperatures of 20 and 40°C yielded the greatest pressure resistance in V. parahaemolyticus. The effects of salt concentration and H(2)O(2)-degrading compounds on the recovery of V. parahaemolyticus also were investigated. Sterile oyster meats were inoculated with V. parahaemolyticus and treated at 250 MPa for 1, 2, or 3 min at 21°C. These meats were then blended with 0.1% peptone water supplemented with 0.5 to 1.5% NaCl and plated on tryptic soy agar (TSA) supplemented with 0 to 3.5% NaCl. For recovery of pressure-injured cells, peptone water with 1% NaCl and TSA with 0.5% NaCl were the best diluent and plating medium, respectively. Addition of sodium pyruvate (0.05 to 0.2%) or catalase (8 to 32 U/ml) did not increase the recovery of V. parahaemolyticus after pressure treatment. The effect of incubation temperature and gas atmosphere on the recovery of V. parahaemolyticus after pressure treatment also was determined. Aerobic incubation at 30°C resulted in the highest recovery of V. parahaemolyticus in sterile oyster meats. The 30°C incubation temperature was also the optimum temperature for recovery of V. parahaemolyticus in pressure-treated live oysters. The results of this study indicate that the growth conditions for V. parahaemolyticus before and after high hydrostatic pressure treatment should be taken into consideration when assessing the efficacy of pressure inactivation.


Subject(s)
Food Handling/methods , Hydrostatic Pressure , Ostreidae/microbiology , Shellfish/microbiology , Vibrio parahaemolyticus/growth & development , Animals , Colony Count, Microbial , Consumer Product Safety , Food Contamination/analysis , Food Contamination/prevention & control , Food Microbiology , Humans , Temperature , Time Factors
11.
Int J Food Microbiol ; 136(3): 359-63, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19931930

ABSTRACT

Experimental conditions can affect the outcome of bacterial stress-tolerance assays. Growth conditions that optimize microbial recovery should be established to help evaluate the effectiveness of treatment conditions for food safety. The objectives of this study were to determine the effects of growth and recovery temperatures on pressure resistance of early stationary-phase Listeria monocytogenes in milk. The tested conditions were the following: (1) L. monocytogenes was grown at various temperatures (10, 15, 20, 25, 30, 35, 40 and 43 degrees C), suspended in ultra-high temperature (UHT) -processed whole milk, pressure-treated at 400 MPa for 2 min at 21 degrees C and recovered on Tryptic Soy Agar supplemented with 0.6% yeast extract (TSAYE) at 35 degrees C; (2) L. monocytogenes was grown at 35 and 43 degrees C, pressure treated in milk (400 and 500 MPa, respectively, for 2 min at 21 degrees C) and recovered on TSAYE at various temperatures (4, 10, 15, 20, 25, 30, 35 and 40 degrees C); (3) L. monocytogenes originally grown at 35 degrees C, was pressure treated in milk (400 or 450 MPa for 2 min at 21 degrees C), and recovered on TSAYE at 10 degrees C for various time intervals (1, 2, 3, 6, 9 and 12 days) then at 35 degrees C for 5 days. There was no significant difference (P>0.05) in pressure-resistance of L. monocytogenes grown at 10 to 25 degrees C with approximately 6.5-log CFU/ml population reductions. At growth temperatures greater than 25 degrees C, pressure resistance increased with less than 1-log CFU/ml reduction observed for L. monocytogenes originally grown at 43 degrees C. After pressure treatment, regardless of growth temperature and pressure treatment, the greatest recovery of L. monocytogenes was within the 4 to 20 degrees C range; maximum recovery at 10 degrees C required approximately 24 days. The time for comparable post-pressure treatment recovery could be reduced by incubation at 10 degrees C for at least 2 days followed by incubation at 35 degrees C for 5 days. The findings of the present study indicate that growth and recovery temperatures affect the pressure resistance of L. monocytogenes and should, therefore, be taken into account when assessing the adequacy of inactivation treatments.


Subject(s)
Consumer Product Safety , Food Handling/methods , Listeria monocytogenes/growth & development , Milk/microbiology , Animals , Cattle , Colony Count, Microbial , Food Contamination/prevention & control , Food Microbiology , Humans , Hydrostatic Pressure , Temperature
12.
J Food Prot ; 72(7): 1500-8, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19681278

ABSTRACT

Disease management in the food industry is complex and includes use of good hygienic practices, antimicrobials, and immunization. Vaccines are available against many, but not all, disease agents affecting animals reared for human food. Fewer vaccines are currently licensed and widely available for human foodborne pathogens. Increased resistance to antimicrobials provides additional impetus to develop new vaccines. In addition to the need for new vaccines, new methods of vaccine production are desired. Some current methods of vaccine production can involve use of hazardous chemicals, provide inconsistent results, or present risk to vaccine recipients with certain allergies. The efficacy of high hydrostatic pressure (HHP) for inactivation of a variety of foodborne pathogenic microorganisms has been well established, and some of these microorganisms have been demonstrated to retain immunogenic properties, suggesting HHP may have application for the development of vaccines. Studies on the effect of HHP on infectivity and immunogenicity of various viruses, a protozoan parasite, and one bacterial species are presented. Control of several of these pathogens is important for animal health and economic stability in several sectors of the food industry. The research to date on the potential for vaccine development by HHP is presented.


Subject(s)
Bacterial Vaccines/immunology , Hydrostatic Pressure , Protozoan Vaccines/immunology , Vaccination/veterinary , Viral Vaccines/immunology , Animals , Drug Resistance, Bacterial , Food Technology/methods , Humans
13.
Int J Food Microbiol ; 127(1-2): 1-5, 2008 Sep 30.
Article in English | MEDLINE | ID: mdl-18547664

ABSTRACT

The objective of this study was to identify the high pressure processing conditions (pressure level, time, and temperature) needed to achieve a 5-log reduction of Vibrio parahaemolyticus in live oysters (Crassostrea virginica). Ten strains of V. parahaemolyticus were separately tested for their resistances to high pressure. The two most pressure-resistant strains were then used as a cocktail to represent baro-tolerant environmental strains. To evaluate the effect of temperature on pressure inactivation of V. parahaemolyticus, Vibrio-free oyster meats were inoculated with the cocktail of V. parahaemolyticus and incubated at room temperature (approximately 21 degrees C) for 24 h. Oyster meats were then blended and treated at 250 MPa for 5 min, 300 MPa for 2 min, and 350 MPa for 1 min. Pressure treatments were carried out at -2, 1, 5, 10, 20, 30, 40, and 45 degrees C. Temperatures > or = 30 degrees C enhanced pressure inactivation of V. parahaemolyticus. To achieve a 5-log reduction of V. parahaemolyticus in live oysters, pressure treatment needed to be > or = 350 MPa for 2 min at temperatures between 1 and 35 degrees C and > or = 300 MPa for 2 min at 40 degrees C.


Subject(s)
Food Handling/methods , Food Preservation/methods , Hydrostatic Pressure , Ostreidae/microbiology , Shellfish/microbiology , Vibrio parahaemolyticus/growth & development , Animals , Colony Count, Microbial , Consumer Product Safety , Food Contamination/prevention & control , Humans , Temperature , Time Factors
14.
J Food Prot ; 70(12): 2837-42, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18095439

ABSTRACT

The prevalence, size, genome, and life cycle of Eimeria acervulina make this organism a good surrogate for Cyclospora cayetanensis, a protozoan that causes gastroenteritis in humans, including recent outbreaks in the United States and Canada associated with contaminated raspberries and basil. Laboratory studies of C. cayetanensis are difficult because of the lack of readily available oocysts and of infection models and assays. UV radiation and high-hydrostatic-pressure processing (HPP) are both safe technologies with potential for use on fresh produce. Raspberries and basil were inoculated with sporulated E. acervulina oocysts at high (10(6) oocysts) and low (10(4) oocysts) levels, and inoculated and control produce were treated with UV (up to 261 mW/cm2) or HPP (550 MPa at 40 degrees C for 2 min). Oocysts recovered from produce were fed to 3-week-old broiler chickens, which were scored for weight gain, oocyst shedding, and lesions at 6 days postinoculation. Oocysts exhibited enhanced excystation on raspberries but not on basil. Birds fed oocysts from UV-treated raspberries had reduced infection rates, which varied with oocyst inoculum level and UV intensity. Birds fed oocysts from UV-treated raspberries (10(4) oocysts) were asymptomatic but shed oocysts, and birds fed oocysts from UV-treated basil (10(4) oocysts) were asymptomatic and did not shed oocysts. Birds fed oocysts from HPP-treated raspberries and basil were asymptomatic and did not shed oocysts. These results suggest that UV radiation and HPP may be used to reduce the risk for cyclosporiasis infection associated with produce. Both treatments yielded healthy animals; however, HPP was more effective, as indicated by results for produce with higher contamination levels.


Subject(s)
Eimeria/drug effects , Eimeria/radiation effects , Food Contamination/prevention & control , Fruit/parasitology , Hydrostatic Pressure , Ultraviolet Rays , Animals , Biological Assay , Chickens/parasitology , Consumer Product Safety , Cyclospora/drug effects , Cyclospora/radiation effects , Dose-Response Relationship, Radiation , Food Handling/methods , Food Irradiation , Food Parasitology , Humans , Ocimum basilicum/parasitology , Oocysts , Parasite Egg Count
15.
J Food Prot ; 66(2): 182-7, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12597474

ABSTRACT

BAX, a polymerase chain reaction (PCR)-based pathogen detection system, was used to survey retail sprouts and mushrooms for contamination with Escherichia coli O157:H7, Salmonella, Listeria spp., and Listeria monocytogenes. No Salmonella or E. coli O157:H7 was detected in the 202 mushroom and 206 alfalfa sprout samples screened. L. monocytogenes was detected in one sprout sample, and seven additional sprout samples tested positive for the genus Listeria. BAX also detected Listeria species in 17 of the mushroom samples. Only 6 of 850 PCR assays (0.7%) failed to amplify control DNA, and therefore reagent failures and the inhibition of PCR by plant compounds were rare. The sensitivity of the detection system was evaluated by assaying samples inoculated with 10 CFU of each of the pathogens. One hundred seventy-two alfalfa sprout samples were inoculated with E. coli O157:H7, and two sets of 130 samples were experimentally contaminated with Salmonella Enteritidis and L. monocytogenes. The frequency of detection depended on the protocols used for inoculation and culturing. Inoculation of samples with approximately 10 CFU from frozen stocks yielded detection rates of 87.5 and 94.5% for L. monocylogenes and Salmonella Enteritidis, respectively, in mushrooms. The corresponding rates for alfalfa sprouts were 94.5 and 76.3%. The E. coli O157:H7 detection rate was 100% for mushrooms but only 48.6% for sprouts when standard BAX culture protocols were used. The substitution of an overnight incubation in modified E. coli medium for the 3-h brain heart infusion incubation increased the rate of E. coli O157:H7 detection to 75% for experimentally contaminated sprouts. The detection rate was 100% when E. coli O157:H7 cells from a fresh overnight culture were used for the inoculation. Test sensitivity is therefore influenced by the type of produce involved and is probably related to the growth of pathogens in the resuscitation and enrichment media.


Subject(s)
Agaricales , Escherichia coli O157/isolation & purification , Listeria/isolation & purification , Medicago sativa/microbiology , Salmonella/isolation & purification , DNA, Bacterial/analysis , Food Contamination/analysis , Food Microbiology , Listeria monocytogenes/isolation & purification , Polymerase Chain Reaction/methods , Reproducibility of Results , Sensitivity and Specificity
16.
J Food Prot ; 65(8): 1271-5, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12182479

ABSTRACT

The heat resistance of various yeasts (Saccharomyces cerevisiae, Rhodotorula mucilaginosa, Torulaspora delbrueckii, and Zygosaccharomyces rouxii), molds (Penicillium citrinum, Penicillium roquefortii, and Aspergillus niger), and lactic acid bacteria (Lactobacillus fermentum and Lactobacillus plantarum) obtained from spoiled acid or acidified food products was determined in 0.1 M citrate buffer at pH values of 3.0, 3.5, and 4.0. S. cerevisiae was the most heat resistant of the microorganisms in citrate buffer, and its heat resistance was further evaluated in apple, grapefruit, calcium-fortified apple, and tomato juices as well as in a juice base with high fructose corn syrup. Decimal reduction times (D-values) and changes in temperature required to change the D-value (z-values) for S. cerevisiae were higher in the juices than in citrate buffer at all pH values tested. The D57 degrees C(135 degrees F)-values varied from 9.4 min in the juice product with pH 2.8 to 32 min in a calcium-added apple juice with pH 3.9. The S. cerevisiae strain used in this study can be used in thermal-death-time experiments in acidic products to calculate process conditions and in challenge tests to validate the calculated temperatures and hold times during processing.


Subject(s)
Beverages/microbiology , Lactobacillus/physiology , Yeasts/physiology , Food Microbiology , Fruit/microbiology , Hot Temperature , Hydrogen-Ion Concentration , Lactobacillus/growth & development , Time Factors , Yeasts/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...