Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Am J Pathol ; 193(1): 103-120, 2023 01.
Article in English | MEDLINE | ID: mdl-36464513

ABSTRACT

Age is a risk factor for human estrogen receptor-positive breast cancer, with highest prevalence following menopause. While transcriptome risk profiling is available for human breast cancers, it is not yet developed for prognostication for primary or secondary breast cancer development utilizing at-risk breast tissue. Both estrogen receptor α (ER) and aromatase overexpression have been linked to human breast cancer. Herein, conditional genetically engineered mouse models of estrogen receptor 1 (Esr1) and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) were used to show that induction of Esr1 overexpression just before or with reproductive senescence and maintained through age 30 months resulted in significantly higher prevalence of estrogen receptor-positive adenocarcinomas than CYP19A1 overexpression. All adenocarcinomas tested showed high percentages of ER+ cells. Mammary cancer development was preceded by a persistent proliferative transcriptome risk signature initiated within 1 week of transgene induction that showed parallels to the Prosigna/Prediction Analysis of Microarray 50 human prognostic signature for early-stage human ER+ breast cancer. CYP19A1 mice also developed ER+ mammary cancers, but histology was more divided between adenocarcinoma and adenosquamous, with one ER- adenocarcinoma. Results demonstrate that, like humans, generation of ER+ adenocarcinoma in mice was facilitated by aging mice past the age of reproductive senescence. Esr1 overexpression was associated with a proliferative estrogen pathway-linked signature that preceded appearance of ER+ mammary adenocarcinomas.


Subject(s)
Adenocarcinoma , Breast Neoplasms , Mammary Glands, Animal , Animals , Female , Mice , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Aging/genetics , Aging/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Gene Expression , Aromatase/genetics , Aromatase/metabolism , Reproduction/genetics , Reproduction/physiology
2.
Sci Rep ; 11(1): 13215, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168223

ABSTRACT

In corn/maize, silks emerging from cobs capture pollen, and transmit resident sperm nuclei to eggs. There are > 20 million silks per U.S. maize acre. Fungal pathogens invade developing grain using silk channels, including Fusarium graminearum (Fg, temperate environments) and devastating carcinogen-producers (Africa/tropics). Fg contaminates cereal grains with mycotoxins, in particular Deoxynivalenol (DON), known for adverse health effects on humans and livestock. Fitness selection should promote defensive/healthy silks. Here, we report that maize silks, known as styles in other plants, possess complex and dynamic microbiomes at the critical pollen-fungal transmission interval (henceforth: transmitting style microbiome, TSM). Diverse maize genotypes were field-grown in two trial years. MiSeq 16S rRNA gene sequencing of 328 open-pollinated silk samples (healthy/Fg-infected) revealed that the TSM contains > 5000 taxa spanning the prokaryotic tree of life (47 phyla/1300 genera), including nitrogen-fixers. The TSM of silk tip tissue displayed seasonal responsiveness, but possessed a reproducible core of 7-11 MiSeq-amplicon sequence variants (ASVs) dominated by a single Pantoea MiSeq-taxon (15-26% of sequence-counts). Fg-infection collapsed TSM diversity and disturbed predicted metabolic functionality, but doubled overall microbiome size/counts, primarily by elevating 7-25 MiSeq-ASVs, suggestive of a selective microbiome response against infection. This study establishes the maize silk as a model for fundamental/applied research of plant reproductive microbiomes.


Subject(s)
Microbiota/genetics , Silk/metabolism , Zea mays/microbiology , Africa , Fusarium/genetics , Mycotoxins/genetics , Pollen/microbiology , Pollination/physiology , RNA, Ribosomal, 16S/genetics
3.
Proc Natl Acad Sci U S A ; 117(38): 23418-23425, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32900968

ABSTRACT

Lunar mare basalts are depleted in F and Cl by approximately an order of magnitude relative to mid-ocean ridge basalts and contain two Cl-bearing components with elevated isotopic compositions relative to the bulk-Earth value of ∼0‰. The first is a water-soluble chloride constituting 65 ± 10% of total Cl with δ37Cl values averaging 3.0 ± 4.3‰. The second is structurally bound chloride with δ37Cl values averaging 7.3 ± 3.5‰. These high and distinctly different isotopic values are inconsistent with equilibrium fractionation processes and instead suggest early and extensive degassing of an isotopically light vapor. No relationship is observed between F/Cl ratios and δ37Cl values, which suggests that lunar halogen depletion largely resulted from the Moon-forming Giant Impact. The δ37Cl values of apatite are generally higher than the structurally bound Cl, and ubiquitously higher than the calculated bulk δ37Cl values of 4.1 ± 4.0‰. The apatite grains are not representative of the bulk rock, and instead record localized degassing during the final stages of lunar magma ocean (LMO) or later melt crystallization. The large variability in the δ37Cl values of apatite within individual thin sections further supports this conclusion. While urKREEP (primeval KREEP [potassium/rare-earth elements/phosphorus]) has been proposed to be the source of the Moon's high Cl isotope values, the ferroan anorthosites (FANs) have the highest δ37Cl values and have a positive correlation with Cl content, and yet do not contain apatite, nor evidence of a KREEP component. The high δ37Cl values in this lithology are explained by the incorporation of a >30‰ HCl vapor from a highly evolved LMO.

4.
Tetrahedron ; 75(43)2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31741543

ABSTRACT

4H-Pyrans (4H-Pys) and 1,4-dihydropyridines (1,4-DHPs) are important classes of heterocyclic scaffolds in medicinal chemistry. Herein, an indium(III)-catalyzed one-pot domino reaction for the synthesis of highly functionalized 4H-Pys, and a model of 1,4-DHP is reported. This alternative approach to the challenging Hantzsch 4-component reaction enables the synthesis of fused-tricyclic heterocycles, and the mechanistic studies underline the importance of an intercepted-Knoevenagel adduct to achieve higher chemoselectivity towards these types of unsymmetrical heterocycles.

5.
Proc Natl Acad Sci U S A ; 114(36): 9547-9551, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28827322

ABSTRACT

The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth's depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the "Rusty Rock" impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ66Zn = -13.7‰), heavy Cl (δ37Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ66Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior.

6.
Nat Microbiol ; 1: 16167, 2016 Sep 26.
Article in English | MEDLINE | ID: mdl-27669453

ABSTRACT

The ancient African crop, finger millet, has broad resistance to pathogens including the toxigenic fungus Fusarium graminearum. Here, we report the discovery of a novel plant defence mechanism resulting from an unusual symbiosis between finger millet and a root-inhabiting bacterial endophyte, M6 (Enterobacter sp.). Seed-coated M6 swarms towards root-invading Fusarium and is associated with the growth of root hairs, which then bend parallel to the root axis, subsequently forming biofilm-mediated microcolonies, resulting in a remarkable, multilayer root-hair endophyte stack (RHESt). The RHESt results in a physical barrier that prevents entry and/or traps F. graminearum, which is then killed. M6 thus creates its own specialized killing microhabitat. Tn5-mutagenesis shows that M6 killing requires c-di-GMP-dependent signalling, diverse fungicides and resistance to a Fusarium-derived antibiotic. Further molecular evidence suggests long-term host-endophyte-pathogen co-evolution. The end result of this remarkable symbiosis is reduced deoxynivalenol mycotoxin, potentially benefiting millions of subsistence farmers and livestock. Further results suggest that the anti-Fusarium activity of M6 may be transferable to maize and wheat. RHESt demonstrates the value of exploring ancient, orphan crop microbiomes.

7.
Front Plant Sci ; 6: 805, 2015.
Article in English | MEDLINE | ID: mdl-26500660

ABSTRACT

Wild maize (teosinte) has been reported to be less susceptible to pests than their modern maize (corn) relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER) in modern maize and produces the mycotoxin, deoxynivalenol (DON). In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense.

8.
Front Plant Sci ; 6: 652, 2015.
Article in English | MEDLINE | ID: mdl-26347768

ABSTRACT

The small grain cereal, finger millet (FM, Eleusine coracana L. Gaertn), is valued by subsistence farmers in India and East Africa as a low-input crop. It is reported by farmers to require no added nitrogen (N), or only residual N, to produce grain. Exact mechanisms underlying the acclimation responses of FM to low N are largely unknown, both above and below ground. In particular, the responses of FM roots and root hairs to N or any other nutrient have not previously been reported. Given its low N requirement, FM also provides a rare opportunity to study long-term responses to N starvation in a cereal species. The objective of this study was to survey the shoot and root morphometric responses of FM, including root hairs, to low N stress. Plants were grown in pails in a semi-hydroponic system on clay containing extremely low background N, supplemented with N or no N. To our surprise, plants grown without deliberately added N grew to maturity, looked relatively normal and produced healthy seed heads. Plants responded to the low N treatment by decreasing shoot, root, and seed head biomass. These declines under low N were associated with decreased shoot tiller number, crown root number, total crown root length and total lateral root length, but with no consistent changes in root hair traits. Changes in tiller and crown root number appeared to coordinate the above and below ground acclimation responses to N. We discuss the remarkable ability of FM to grow to maturity without deliberately added N. The results suggest that FM should be further explored to understand this trait. Our observations are consistent with indigenous knowledge from subsistence farmers in Africa and Asia, where it is reported that this crop can survive extreme environments.

9.
BMC Res Notes ; 8: 143, 2015 Apr 12.
Article in English | MEDLINE | ID: mdl-25889276

ABSTRACT

In cereal crops, root hairs are reported to function within the root hair zone to carry out important roles in nutrient and water absorption. Nevertheless, these single cells remain understudied due to the practical challenges of phenotyping these delicate structures in large cereal crops growing on soil or other growth systems. Here we present an alternative growth system for examining the root hairs of cereal crops: the use of coarse Turface® clay alongside fertigation. This system allowed for root hairs to be easily visualized along the entire lengths of crown roots in three different cereal crops (maize, wheat, and finger millet). Surprisingly, we observed that the root hairs in these crops continued to grow beyond the canonical root hair zone, with the most root hair growth occurring on older crown root segments. We suggest that the Turface® fertigation system may permit a better understanding of the changing dynamics of root hairs as they age in large plants, and may facilitate new avenues for crop improvement below ground. However, the relevance of this system to field conditions must be further evaluated in other crops.


Subject(s)
Aluminum Silicates/chemistry , Edible Grain/anatomy & histology , Eleusine/anatomy & histology , Plant Roots/anatomy & histology , Triticum/anatomy & histology , Zea mays/anatomy & histology , Agricultural Irrigation/instrumentation , Agricultural Irrigation/methods , Clay , Edible Grain/growth & development , Edible Grain/physiology , Eleusine/growth & development , Eleusine/physiology , Humans , Phenotype , Plant Roots/growth & development , Plant Roots/physiology , Soil/chemistry , Triticum/growth & development , Triticum/physiology , Zea mays/growth & development , Zea mays/physiology
10.
Nature ; 432(7014): 209-11, 2004 Nov 11.
Article in English | MEDLINE | ID: mdl-15538366

ABSTRACT

Primordial solidification of the Moon (or its uppermost layer) resulted in the formation of a variety of rock types that subsequently melted and mixed to produce the compositional diversity observed in the lunar sample suite. The initial rocks to crystallize from this Moon-wide molten layer (the magma ocean) contained olivine and pyroxene and were compositionally less evolved than the plagioclase-rich rocks that followed. The last stage of crystallization, representing the last few per cent of the magma ocean, produced materials that are strongly enriched in incompatible elements including potassium (K), the rare earth elements (REE) and phosphorus (P)--termed KREEP. The decay of radioactive elements in KREEP, such as uranium and thorium, is generally thought to provide the thermal energy necessary for more recent lunar magmatism. The ages of KREEP-rich samples are, however, confined to the earliest periods of lunar magmatism between 3.8 and 4.6 billion years (Gyr) ago, providing no physical evidence that KREEP is directly involved in more recent lunar magmatism. But here we present evidence that KREEP magmatism extended for an additional 1 Gyr, based on analyses of the youngest dated lunar sample.

SELECTION OF CITATIONS
SEARCH DETAIL
...