Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 12(1): 13569, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35945251

ABSTRACT

Increases in precipitation rates and volumes from tropical cyclones (TCs) caused by anthropogenic warming are predicted by climate modeling studies and have been identified in several high intensity storms occurring over the last half decade. However, it has been difficult to detect historical trends in TC precipitation at time scales long enough to overcome natural climate variability because of limitations in existing precipitation observations. We introduce an experimental global high-resolution climate data record of precipitation produced using infrared satellite imagery and corrected at the monthly scale by a gauge-derived product that shows generally good performance during two hurricane case studies but estimates higher mean precipitation rates in the tropics than the evaluation datasets. General increases in mean and extreme rainfall rates during the study period of 1980-2019 are identified, culminating in a 12-18%/40-year increase in global rainfall rates. Overall, all basins have experienced intensification in precipitation rates. Increases in rainfall rates have boosted the mean precipitation volume of global TCs by 7-15%/year, with the starkest rises seen in the North Atlantic, South Indian, and South Pacific basins (maximum 59-64% over 40 years). In terms of inland rainfall totals, year-by-year trends are generally positive due to increasing TC frequency, slower decay over land, and more intense rainfall, with an alarming increase of 81-85% seen from the strongest global TCs. As the global trend in precipitation rates follows expectations from warming sea surface temperatures (11.1%/°C), we hypothesize that the observed trends could be a result of anthropogenic warming creating greater concentrations of water vapor in the atmosphere, though retrospective studies of TC dynamics over the period are needed to confirm.


Subject(s)
Cyclonic Storms , Climate , Rain , Retrospective Studies , Temperature
3.
J Hydrometeorol ; 21(12): 2893-2906, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-34158807

ABSTRACT

This study presents the Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Dynamic Infrared Rain Rate (PDIR-Now) near-real-time precipitation dataset. This dataset provides hourly, quasi-global, infrared-based precipitation estimates at 0.04° × 0.04° spatial resolution with a short latency (15-60 min). It is intended to supersede the PERSIANN-Cloud Classification System (PERSIANN-CCS) dataset previously produced as the near-real-time product of the PERSIANN family. We first provide a brief description of the algorithm's fundamentals and the input data used for deriving precipitation estimates. Second, we provide an extensive evaluation of the PDIR-Now dataset over annual, monthly, daily, and subdaily scales. Last, the article presents information on the dissemination of the dataset through the Center for Hydrometeorology and Remote Sensing (CHRS) web-based interfaces. The evaluation, conducted over the period 2017-18, demonstrates the utility of PDIR-Now and its improvement over PERSIANN-CCS at all temporal scales. Specifically, PDIR-Now improves the estimation of rain/no-rain days as demonstrated by a critical success index (CSI) of 0.53 compared to 0.47 of PERSIANN-CCS. In addition, PDIR-Now improves the estimation of seasonal and diurnal cycles of precipitation as well as regional precipitation patterns erroneously estimated by PERSIANN-CCS. Finally, an evaluation is carried out to examine the performance of PDIR-Now in capturing two extreme events, Hurricane Harvey and a cluster of summer thunderstorms that occurred over the Netherlands, where it is shown that PDIR-Now adequately represents spatial precipitation patterns as well as subdaily precipitation rates with a correlation coefficient (CORR) of 0.64 for Hurricane Harvey and 0.76 for the Netherlands thunderstorms.

4.
Sci Data ; 6: 180296, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30620343

ABSTRACT

The Center for Hydrometeorology and Remote Sensing (CHRS) has created the CHRS Data Portal to facilitate easy access to the three open data licensed satellite-based precipitation datasets generated by our Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) system: PERSIANN, PERSIANN-Cloud Classification System (CCS), and PERSIANN-Climate Data Record (CDR). These datasets have the potential for widespread use by various researchers, professionals including engineers, city planners, and so forth, as well as the community at large. Researchers at CHRS created the CHRS Data Portal with an emphasis on simplicity and the intention of fostering synergistic relationships with scientists and experts from around the world. The following paper presents an outline of the hosted datasets and features available on the CHRS Data Portal, an examination of the necessity of easily accessible public data, a comprehensive overview of the PERSIANN algorithms and datasets, and a walk-through of the procedure to access and obtain the data.


Subject(s)
Climate , Databases, Factual , Rain , Snow
SELECTION OF CITATIONS
SEARCH DETAIL
...