Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Exp Biol ; 223(Pt 18)2020 09 23.
Article in English | MEDLINE | ID: mdl-32967976

ABSTRACT

We analysed 3680 dives from 23 satellite-linked tags deployed on Cuvier's beaked whales to assess the relationship between long duration dives and inter-deep dive intervals and to estimate aerobic dive limit (ADL). The median duration of presumed foraging dives was 59 min and 5% of dives exceeded 77.7 min. We found no relationship between the longest 5% of dive durations and the following inter-deep dive interval nor any relationship with the ventilation period immediately prior to or following a long dive. We suggest that Cuvier's beaked whales have low metabolic rates, high oxygen storage capacities and a high acid-buffering capacity to deal with the by-products of both aerobic and anaerobic metabolism, which enables them to extend dive durations and exploit their bathypelagic foraging habitats.


Subject(s)
Diving , Echolocation , Animals , Ecosystem , Time Factors , Whales
2.
R Soc Open Sci ; 6(2): 181728, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30891284

ABSTRACT

Cuvier's beaked whales exhibit exceptionally long and deep foraging dives. The species is little studied due to their deep-water, offshore distribution and limited time spent at the surface. We used LIMPET satellite tags to study the diving behaviour of Cuvier's beaked whales off Cape Hatteras, North Carolina from 2014 to 2016. We deployed 11 tags, recording 3242 h of behaviour data, encompassing 5926 dives. Dive types were highly bimodal; deep dives (greater than 800 m, n = 1408) had a median depth of 1456 m and median duration of 58.9 min; shallow dives (50-800 m, n = 4518) were to median depths of 280 m with a median duration of 18.7 min. Most surface intervals were very short (median 2.2 min), but all animals occasionally performed extended surface intervals. We found no diel differences in dive depth or the percentage of time spent deep diving, but whales spent significantly more time near the surface at night. Other populations of this species exhibit similar dive patterns, but with regional differences in depth, duration and inter-dive intervals. Satellite-linked tags allow for the collection of long periods of dive records, including the occurrence of anomalous behaviours, bringing new insights into the lives of these deep divers.

3.
Curr Biol ; 26(11): 1441-6, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27238281

ABSTRACT

The question of how individuals acquire and allocate resources to maximize fitness is central in evolutionary ecology. Basic information on prey selection, search effort, and capture rates are critical for understanding a predator's role in its ecosystem and for predicting its response to natural and anthropogenic disturbance. Yet, for most marine species, foraging interactions cannot be observed directly. The high costs of thermoregulation in water require that small marine mammals have elevated energy intakes compared to similar-sized terrestrial mammals [1]. The combination of high food requirements and their position at the apex of most marine food webs may make small marine mammals particularly vulnerable to changes within the ecosystem [2-4], but the lack of detailed information about their foraging behavior often precludes an informed conservation effort. Here, we use high-resolution movement and prey echo recording tags on five wild harbor porpoises to examine foraging interactions in one of the most metabolically challenged cetacean species. We report that porpoises forage nearly continuously day and night, attempting to capture up to 550 small (3-10 cm) fish prey per hour with a remarkable prey capture success rate of >90%. Porpoises therefore target fish that are smaller than those of commercial interest, but must forage almost continually to meet their metabolic demands with such small prey, leaving little margin for compensation. Thus, for these "aquatic shrews," even a moderate level of anthropogenic disturbance in the busy shallow waters they share with humans may have severe fitness consequences at individual and population levels.


Subject(s)
Phocoena/physiology , Predatory Behavior , Animals , Conservation of Natural Resources , Denmark , Female , Food Chain , Male
SELECTION OF CITATIONS
SEARCH DETAIL