Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 932: 172996, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38719042

ABSTRACT

Perfluorooctane sulfonate (PFOS), one of the most frequently detected per- and polyfluoroalkyl substances (PFAS) occurring in soil, surface water, and groundwater near sites contaminated with aqueous film-forming foam (AFFF), has proven to be recalcitrant to many destructive remedies, including chemical oxidation. We investigated the potential to utilize microbially mediated reduction (bioreduction) to degrade PFOS and other PFAS through addition of a known dehalogenating culture, WBC-2, to soil obtained from an AFFF-contaminated site. A substantial decrease in total mass of PFOS (soil and water) was observed in microcosms amended with WBC-2 and chlorinated volatile organic compound (cVOC) co-contaminants - 46.4 ± 11.0 % removal of PFOS over the 45-day experiment. In contrast, perfluorooctanoate (PFOA) and 6:2 fluorotelomer sulfonate (6:2 FTS) concentrations did not decrease in the same microcosms. The low or non-detectable concentrations of potential metabolites in full PFAS analyses, including after application of the total oxidizable precursor assay, indicated that defluorination occurred to non-fluorinated compounds or ultrashort-chain PFAS. Nevertheless, additional research on the metabolites and degradation pathways is needed. Population abundances of known dehalorespirers did not change with PFOS removal during the experiment, making their association with PFOS removal unclear. An increased abundance of sulfate reducers in the genus Desulfosporosinus (Firmicutes) and Sulfurospirillum (Campilobacterota) was observed with PFOS removal, most likely linked to initiation of biodegradation by desulfonation. These results have important implications for development of in situ bioremediation methods for PFAS and advancing knowledge of natural attenuation processes.


Subject(s)
Alkanesulfonic Acids , Biodegradation, Environmental , Fluorocarbons , Soil Microbiology , Soil Pollutants , Fluorocarbons/metabolism , Alkanesulfonic Acids/metabolism , Soil Pollutants/metabolism , Anaerobiosis , Halogenation , Solvents , Soil/chemistry , Microbiota
2.
ACS Nano ; 5(5): 3469-74, 2011 May 24.
Article in English | MEDLINE | ID: mdl-21469712

ABSTRACT

Controlling reaction temperature for a set time enables the size of gold nanoparticles autoreduced on the surface of polyaniline nanofibers to be controlled. The size of the gold nanoparticles can be used to tune the electrical bistable memory effect in gold/polyaniline nanofiber composite devices. Turn-on voltages and on/off ratios improve with decreasing nanoparticle size, making this a promising method to enhance performance and create smaller devices. Long-term stability of the composites can be improved by the addition of stabilizers following autoreduction of the gold nanoparticles.


Subject(s)
Aniline Compounds/chemistry , Crystallization/methods , Gold/chemistry , Nanostructures/chemistry , Nanotechnology/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Nanostructures/ultrastructure , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...