Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animal ; 12(4): 750-756, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28835301

ABSTRACT

Feeding dried distillers grains with solubles (DDGS), a feed high in fat and protein, to lactating beef cows can alter milk production and composition, resulting in improved pre-weaning growth of progeny. This alteration in milk profile may consequently alter the growth and carcass composition of the offspring after weaning. Therefore, Angus×Simmental steers (n=48) whose dams were fed one of two diets supplemented with either DDGS or soybean meal (CON) from calving to mid-lactation were placed in a feedlot to determine the effects of maternal nutrition during lactation on progeny development and carcass composition. Cow-calf pairs were allotted to two treatments at birth based on cow and calf BW, breed and age. Maternal diets were isocaloric (3.97 MJ/kg NEg) and consisted of rye hay supplemented with DDGS at 1% of BW (19.4% CP; 8.76% fat) or rye hay and corn silage supplemented with CON (11.7% CP; 2.06% fat). After conclusion of the treatments at 129 days postpartum, cow-calf pairs were comingled and managed as one group until weaning at 219 days postpartum. Steers were then transitioned to a common diet composed of 60% DDGS, 34% corn silage and 6% vitamin/mineral supplement and were placed indoors in individual pens with slatted floors. An intravenous glucose tolerance test (IVGTT) was performed 134 days after feedlot entry on 16 steers (CON, n=7; DDGS, n=9) to determine the effect of maternal diet on glucose and insulin sensitivity. Steers were slaughtered at a target BW of 645 kg. Categorical and continuous data were analyzed using the GLIMMIX and MIXED procedures of SAS, respectively. Steers from DDGS dams tended to be heavier on day 85 of feedlot finishing (P=0.09) compared with steers from CON dams. However, there were no differences in final weight, average daily gain, dry matter intake or efficiency (gain:feed, P⩾0.18). Maternal treatments did not affect progeny days on feed (P=0.15), despite a mean difference of 9 days in favor of DDGS. Glucose and insulin concentrations and area under the curve of progeny as measured by IVGTT were not affected by maternal diet (P⩾0.16). Maternal DDGS supplementation decreased marbling score (P=0.04), but did not influence carcass grading percentage or any other carcass characteristic (P⩾0.17).


Subject(s)
Cattle/physiology , Dietary Supplements/analysis , Edible Grain/metabolism , Meat/analysis , Animal Feed/analysis , Animals , Cattle/growth & development , Diet/veterinary , Edible Grain/anatomy & histology , Female , Glucose Tolerance Test/veterinary , Lactation , Glycine max/chemistry , Weaning
2.
Animal ; 10(1): 55-63, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26302035

ABSTRACT

Multiparous Angus×Simmental cows (n=54, 5.22±2.51 years) with male progeny were fed one of two diets supplemented with either dried distillers grains with solubles (DDGS) or soybean meal (CON), from calving until day 129 postpartum (PP) to determine effects of excess protein and fat on cow performance, milk composition and calf growth. Diets were formulated to be isocaloric and consisted of rye hay and DDGS (19.4% CP; 8.76% fat), or corn silage, rye hay and soybean meal (11.7% CP; 2.06% fat). Cow-calf pairs were allotted by cow and calf age, BW and breed. Cow BW and body condition score (BCS; P⩾0.13) were similar throughout the experiment. A weigh-suckle-weigh was performed on day 64 and day 110±10 PP to determine milk production. Milk was collected on day 68 and day 116±10 PP for analysis of milk components. Milk production was unaffected (P⩾0.75) by dietary treatments. Milk urea nitrogen was increased at both time points in DDGS compared with CON cows (P<0.01). Protein was decreased (P=0.01) and fat was increased (P=0.01) in milk from DDGS compared with CON cows on day 68 PP. Compared to CON, DDGS decreased medium chain FA (P<0.01) and increased long chain FA (P<0.01) at both time points. Saturated FA content of milk was decreased (P<0.01) at both time-points in DDGS compared with CON cows, which resulted in an increase (P<0.01) in monounsaturated and polyunsaturated FA, including cis-9, trans-11 conjugated linoleic acid. Daily gain of the DDGS calves was increased (P=0.01) compared with CON calves, resulting in heavier BW on day 129 (P=0.01). Heavier BW of DDGS calves was maintained through weaning (P=0.01). Timed-artificial insemination (TAI) rates were greater for cows fed DDGS compared with cows fed CON (P<0.02), but dietary treatment had no effect on overall pregnancy rates (P=0.64). In summary, feeding DDGS to lactating beef cows did not change cow BW or BCS, but did improve TAI rates and altered milk composition compared with CON. As a result, male progeny from cows fed DDGS during lactation had greater average daily gain and were heavier at day 129 and at weaning compared with male progeny from cows fed a control diet.


Subject(s)
Animal Feed/analysis , Cattle/physiology , Dietary Proteins/administration & dosage , Dietary Supplements , Milk/metabolism , Animals , Animals, Newborn/growth & development , Cattle/growth & development , Diet/veterinary , Edible Grain , Female , Lactation , Male , Milk/chemistry , Nitrogen/analysis , Postpartum Period , Pregnancy , Pregnancy Rate , Glycine max , Urea/analysis , Zea mays
3.
J Anim Sci ; 91(12): 5762-8, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24146160

ABSTRACT

The manipulation of acid-base balance has been extensively investigated as a means of manipulating Ca homeostasis and managing milk fever in dairy cows. A low dietary cation anion difference (DCAD) increases urinary Ca, blood-ionized Ca, and responsiveness to Ca-homeostatic hormones. Very little attention has been focused on the possibility of using a low dietary DCAD to increase muscle Ca availability, calpain activity, and meat tenderness of beef cattle. Thus, 90 Angus × Simmental crossbred steers were allotted by weight (590.1 ± 2.4 kg) and breed composition (% Simmental) to 3 treatments (6 pens/treatment, 5 steers/pen) to evaluate the effects of DCAD on beef tenderness. Treatments were initiated 2 wk before slaughter and consisted of 3 DCAD (mEq/100 g) treatments: -16, 0, and +16. Basal diets (DM basis) were 62 to 64% corn, 6 to 9% soybean meal, and 20% corn silage, and were formulated to contain similar concentrations of protein, energy (NEm; NEg), and minerals, with the exception of sodium and chlorine. A commercial chloride ion supplement (PASTURChlor, West Central, Ralston, IA) was added to diets to decrease DCAD and sodium bicarbonate was added to diets to increase DCAD. Performance before initiation of the study did not differ among treatments (P > 0.22). Urine pH did not differ at the initiation of the study (P > 0.57), but did increase at a decreasing rate on d 7 (6.37, 7.69, 8.13) and d 14 (5.68, 7.66, 8.03) of the study as DCAD increased from -16 to 0 to +16, respectively (quadratic, P < 0.02). Gain and gain:feed responded quadratically to DCAD (P < 0.01), increasing from -16 to 0 DCAD and decreasing from 0 to +16 DCAD. Hot carcass weight, dressing percent, fat thickness, LM area, yield grade, marbling score, quality grade distribution, 48 h muscle pH, and Ca content of muscle did not differ among treatments (P > 0.16). In addition, DCAD did not affect Warner-Bratzler shear force among treatments after 7 and 21 d of aging (P > 0.23). Although urine pH was decreased by feeding a -16 DCAD diet, Ca influx into the LM and beef tenderness were not affected by altering the DCAD in finishing beef cattle diets.


Subject(s)
Animal Feed/analysis , Diet/veterinary , Meat/standards , Acid-Base Equilibrium , Animal Nutritional Physiological Phenomena , Animals , Anions , Body Composition/drug effects , Calcium/chemistry , Cations , Cattle , Food Handling , Housing, Animal , Hydrogen-Ion Concentration , Male , Muscle, Skeletal/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...