Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 11(11)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38006052

ABSTRACT

SARS-CoV-2 mRNA vaccines are administered as effective prophylactic measures for reducing virus transmission rates and disease severity. To enhance the durability of post-vaccination immunity and combat SARS-CoV-2 variants, boosters have been administered to two-dose vaccinees. However, long-term humoral responses following booster vaccination are not well characterized. A 16-member cohort of healthy SARS-CoV-2 naïve participants were enrolled in this study during a three-dose BNT162b2 vaccine series. Serum samples were collected from vaccinees over 420 days and screened for antigen (Ag)-specific antibody titers, IgG subclass distribution, and neutralizing antibody (nAb) responses. Vaccine boosting restored peak Ag-specific titers with sustained α-RBD IgG and IgA antibody responses when measured at six months post-boost. RBD- and spike-specific IgG4 antibody levels were markedly elevated in three-dose but not two-dose immune sera. Although strong neutralization responses were detected in two- and three-dose vaccine sera, these rapidly decayed to pre-immune levels by four and six months, respectively. While boosters enhanced serum IgG Ab reactivity and nAb responses against variant strains, all variants tested showed resistance to two- and three-dose immune sera. Our data reflect the poor durability of vaccine-induced nAb responses which are a strong predictor of protection from symptomatic SARS-CoV-2 infection. The induction of IgG4-switched humoral responses may permit extended viral persistence via the downregulation of Fc-mediated effector functions.

2.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108460

ABSTRACT

The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impacted healthcare, the workforce, and worldwide socioeconomics. Multi-dose mono- or bivalent mRNA vaccine regimens have shown high efficacy in protection against SARS-CoV-2 and its emerging variants with varying degrees of efficacy. Amino acid changes, primarily in the receptor-binding domain (RBD), result in selection for viral infectivity, disease severity, and immune evasion. Therefore, many studies have centered around neutralizing antibodies that target the RBD and their generation achieved through infection or vaccination. Here, we conducted a unique longitudinal study, analyzing the effects of a three-dose mRNA vaccine regimen exclusively using the monovalent BNT162b2 (Pfizer/BioNTech) vaccine, systematically administered to nine previously uninfected (naïve) individuals. We compare changes in humoral antibody responses across the entire SARS-CoV-2 spike glycoprotein (S) using a high-throughput phage display technique (VirScan). Our data demonstrate that two doses of vaccination alone can achieve the broadest and highest magnitudes of anti-S response. Moreover, we present evidence of novel highly boosted non-RBD epitopes that strongly correlate with neutralization and recapitulate independent findings. These vaccine-boosted epitopes could facilitate multi-valent vaccine development and drug discovery.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Antibody Formation , BNT162 Vaccine , Longitudinal Studies , Pandemics , Vaccination , Antibodies, Neutralizing , Epitopes , Antibodies, Viral
3.
Nat Commun ; 7: 12780, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27619409

ABSTRACT

Understanding the natural evolution and structural changes involved in broadly neutralizing antibody (bnAb) development holds great promise for improving the design of prophylactic influenza vaccines. Here we report an haemagglutinin (HA) stem-directed bnAb, 3I14, isolated from human memory B cells, that utilizes a heavy chain encoded by the IGHV3-30 germline gene. MAb 3I14 binds and neutralizes groups 1 and 2 influenza A viruses and protects mice from lethal challenge. Analysis of VH and VL germline back-mutants reveals binding to H3 and H1 but not H5, which supports the critical role of somatic hypermutation in broadening the bnAb response. Moreover, a single VLD94N mutation improves the affinity of 3I14 to H5 by nearly 10-fold. These data provide evidence that memory B cell evolution can expand the HA subtype specificity. Our results further suggest that establishing an optimized memory B cell pool should be an aim of 'universal' influenza vaccine strategies.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/physiology , Biological Evolution , Immunologic Memory/genetics , Influenza, Human/virology , Animals , Antibodies, Neutralizing/immunology , Antibody Affinity , Epitope Mapping , Epitopes , Gene Expression Regulation, Viral , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A virus/genetics , Influenza Vaccines/immunology , Influenza, Human/immunology , Mice , Models, Molecular , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , Phylogeny , Protein Binding , Protein Conformation
4.
Microbiol Spectr ; 3(1): AID-0028-2014, 2015 Feb.
Article in English | MEDLINE | ID: mdl-26104550

ABSTRACT

Despite the availability of antimicrobial drugs, the continued development of microbial resistance--established through escape mutations and the emergence of resistant strains--limits their clinical utility. The discovery of novel, therapeutic, monoclonal antibodies (mAbs) offers viable clinical alternatives in the treatment and prophylaxis of infectious diseases. Human mAb-based therapies are typically nontoxic in patients and demonstrate high specificity for the intended microbial target. This specificity prevents negative impacts on the patient microbiome and avoids driving the resistance of nontarget species. The in vitro selection of human antibody fragment libraries displayed on phage or yeast surfaces represents a group of well-established technologies capable of generating human mAbs. The advantage of these forms of microbial display is the large repertoire of human antibody fragments present during a single selection campaign. Furthermore, the in vitro selection environments of microbial surface display allow for the rapid isolation of antibodies--and their encoding genes--against infectious pathogens and their toxins that are impractical within in vivo systems, such as murine hybridomas. This article focuses on the technologies of phage display and yeast display, as these strategies relate to the discovery of human mAbs for the treatment and vaccine development of infectious diseases.


Subject(s)
Bacteriophages/genetics , Bacteriophages/metabolism , Cell Surface Display Techniques/methods , Membrane Proteins/metabolism , Recombinant Proteins/metabolism , Yeasts/genetics , Yeasts/metabolism , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/therapeutic use , Humans , Membrane Proteins/genetics , Recombinant Proteins/genetics
5.
PLoS Pathog ; 10(5): e1004103, 2014 May.
Article in English | MEDLINE | ID: mdl-24788925

ABSTRACT

Recent studies have shown high usage of the IGHV1-69 germline immunoglobulin gene for influenza hemagglutinin stem-directed broadly-neutralizing antibodies (HV1-69-sBnAbs). Here we show that a major structural solution for these HV1-69-sBnAbs is achieved through a critical triad comprising two CDR-H2 loop anchor residues (a hydrophobic residue at position 53 (Ile or Met) and Phe54), and CDR-H3-Tyr at positions 98±1; together with distinctive V-segment CDR amino acid substitutions that occur in positions sparse in AID/polymerase-η recognition motifs. A semi-synthetic IGHV1-69 phage-display library screen designed to investigate AID/polη restrictions resulted in the isolation of HV1-69-sBnAbs that featured a distinctive Ile52Ser mutation in the CDR-H2 loop, a universal CDR-H3 Tyr at position 98 or 99, and required as little as two additional substitutions for heterosubtypic neutralizing activity. The functional importance of the Ile52Ser mutation was confirmed by mutagenesis and by BCR studies. Structural modeling suggests that substitution of a small amino acid at position 52 (or 52a) facilitates the insertion of CDR-H2 Phe54 and CDR-H3-Tyr into adjacent pockets on the stem. These results support the concept that activation and expansion of a defined subset of IGHV1-69-encoded B cells to produce potent HV1-69-sBnAbs does not necessarily require a heavily diversified V-segment acquired through recycling/reentry into the germinal center; rather, the incorporation of distinctive amino acid substitutions by Phase 2 long-patch error-prone repair of AID-induced mutations or by random non-AID SHM events may be sufficient. We propose that these routes of B cell maturation should be further investigated and exploited as a pathway for HV1-69-sBnAb elicitation by vaccination.


Subject(s)
Antibodies, Neutralizing/metabolism , Epitope Mapping , Hemagglutination, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/immunology , Amino Acid Sequence , Amino Acid Substitution , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Epitopes/chemistry , Epitopes/genetics , Epitopes/metabolism , Hemagglutination, Viral/genetics , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Influenza Vaccines/chemistry , Influenza Vaccines/genetics , Influenza Vaccines/metabolism , Models, Molecular , Molecular Sequence Data , Molecular Targeted Therapy , Protein Engineering/methods , Protein Structure, Quaternary , Sequence Homology, Amino Acid
6.
Proc Natl Acad Sci U S A ; 111(19): E2018-26, 2014 May 13.
Article in English | MEDLINE | ID: mdl-24778221

ABSTRACT

The newly emerging Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes a Severe Acute Respiratory Syndrome-like disease with ∼43% mortality. Given the recent detection of virus in dromedary camels, zoonotic transfer of MERS-CoV to humans is suspected. In addition, little is known about the role of human neutralizing Ab (nAb) pressure as a driving force in MERS-CoV adaptive evolution. Here, we used a well-characterized nonimmune human Ab-phage library and a panning strategy with proteoliposomes and cells to identify seven human nAbs against the receptor-binding domain (RBD) of the MERS-CoV Spike protein. These nAbs bind to three different epitopes in the RBD and human dipeptidyl peptidase 4 (hDPP4) interface with subnanomolar/nanomolar binding affinities and block the binding of MERS-CoV Spike protein with its hDPP4 receptor. Escape mutant assays identified five amino acid residues that are critical for neutralization escape. Despite the close proximity of the three epitopes on the RBD interface, escape from one epitope did not have a major impact on neutralization with Abs directed to a different epitope. Importantly, the majority of escape mutations had negative impacts on hDPP4 receptor binding and viral fitness. To our knowledge, these results provide the first report on human nAbs against MERS-CoV that may contribute to MERS-CoV clearance and evolution. Moreover, in the absence of a licensed vaccine or antiviral for MERS, this panel of nAbs offers the possibility of developing human mAb-based immunotherapy, especially for health-care workers.


Subject(s)
Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , Coronavirus Infections/immunology , Coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antiviral Agents/immunology , Antiviral Agents/isolation & purification , Biological Evolution , Communicable Diseases, Emerging/drug therapy , Communicable Diseases, Emerging/immunology , Communicable Diseases, Emerging/mortality , Coronavirus/genetics , Coronavirus Infections/drug therapy , Coronavirus Infections/mortality , Dipeptidyl Peptidase 4/immunology , HEK293 Cells , Humans , Immunoglobulin G/immunology , Molecular Sequence Data , Phylogeny , Spike Glycoprotein, Coronavirus/genetics , Zoonoses/drug therapy , Zoonoses/immunology , Zoonoses/mortality
7.
Mol Cancer Ther ; 11(11): 2451-61, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22869555

ABSTRACT

Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of neoplastic disorders characterized by clonally derived and skin-homing malignant T cells that express high level of chemokine receptor CCR4, which is associated with their skin-homing capacity. CCR4 is also highly expressed on T-regulatory cells (Tregs) that can migrate to several different types of chemotactic ligand CCL17- and CCL22-secreting tumors to facilitate tumor cell evasion from immune surveillance. Thus, its high-level expression on CTCL cells and Tregs makes CCR4 a potential ideal target for antibody-based immunotherapy for CTCL and other types of solid tumors. Here, we conducted humanization and affinity optimization of a murine anti-CCR4 monoclonal antibody (mAb), mAb1567, that recognizes both the N-terminal and extracellular domains of CCR4 with high affinity and inhibits chemotaxis of CCR4(+) CTCL cells. In a mouse CTCL tumor model, mAb1567 exhibited a potent antitumor effect and in vitro mechanistic studies showed that both complement-dependent cytotoxicity (CDC) and neutrophil-mediated antibody-dependent cellular cytotoxicity (ADCC) likely mediated this effect. mAb1567 also exerts human NK cell-mediated ADCC activity in vitro. Moreover, mAb1567 also effectively inhibits chemotaxis of CD4(+)CD25(high) Tregs via CCL22 and abrogates Treg suppression activity in vitro. An affinity-optimized variant of humanized mAb1567, mAb2-3, was selected for further preclinical development based on its higher binding affinity and more potent ADCC and CDC activities. Taken together, this high-affinity humanized mAb2-3 with potent antitumor effect and a broad range of mechanisms of action may provide a novel immunotherapy for CTCL and other solid tumors.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibody-Dependent Cell Cytotoxicity/drug effects , Lymphoma, T-Cell, Cutaneous/drug therapy , Lymphoma, T-Cell, Cutaneous/pathology , Receptors, CCR4/immunology , T-Lymphocytes, Regulatory/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Cell Line, Tumor , Chemotaxis/drug effects , Cloning, Molecular , Complement System Proteins/immunology , Humans , Mice , Mice, SCID , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Neutrophils/drug effects , Neutrophils/immunology , Protein Binding/drug effects , T-Lymphocytes, Regulatory/drug effects
8.
Clin Infect Dis ; 52(8): 1003-9, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21460314

ABSTRACT

BACKGROUND: Lack of life-long immunity against influenza viruses represents a major global health care problem with profound medical and economic consequences. A greater understanding of the broad-spectrum "heterosubtypic" neutralizing human antibody (BnAb) response to influenza should bring us closer toward a universal influenza vaccine. METHODS: Serum samples obtained from 77 volunteers in an H5N1 vaccine study were analyzed for cross-reactive antibodies (Abs) against both subtype hemagglutinins (HAs) and a highly conserved pocket on the HA stem of Group 1 viruses. Cross-reactive Abs in commercial intravenous immunoglobulin were affinity purified using H5-coupled beads followed by step-wise monoclonal antibody competition or acid elution. Enzyme-linked immunosorbent assays were used to quantify cross-binding, and neutralization activity was determined with HA-pseudotyped viruses. RESULTS: Prevaccination serum samples have detectable levels of heterosubtypic HA binding activity to both Group 1 and 2 influenza A viruses, including subtypes H5 and H7, respectively, to which study subjects had not been vaccinated. Two different populations of Broadly neutralizing Abs (BnAbs) were purified from intravenous immunoglobulin by H5 beads: ~0.01% of total immunoglobulin G can bind to HAs from both Group 1 and 2 and neutralize H1N1 and H5N1 viruses; ~0.001% is F10-like Abs directed against the HA stem pocket on Group 1 viruses. CONCLUSION: These data--to our knowledge, for the first time--quantitatively show the presence, albeit at low levels, of two populations of heterosubtypic BnAbs against influenza A in human serum. These observations warrant further investigation to determine their origin, host polymorphism(s) that may affect their expression levels and how to boost these BnAb responses by vaccination to reach sustainable protective levels.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Humans , Influenza Vaccines/administration & dosage , Neutralization Tests , Prevalence , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...