Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 10(12)2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34961278

ABSTRACT

Seed germination is the basis for the proliferation of sexual-reproducing plants, efficient crop production, and a successful crop improvement research program. Cotton (Gossypium spp.), the subject of this review, can be often sensitive to germination conditions. The hardness of the cotton seed coat, storage, extreme temperatures, and dormancy are some of the factors that can influence cotton seed germination. Research programs conducting studies on exotic and wild cotton species are especially affected by those hurdles. Here, we briefly review the challenges of cotton seed germination and some of the approaches our cotton breeding program explored throughout the years.

2.
Plants (Basel) ; 9(11)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33217966

ABSTRACT

Understanding drought stress responses and the identification of phenotypic traits associated with drought are key factors in breeding for sustainable cotton production in limited irrigation water of semi-arid environments. The objective of this study was to evaluate the responses of upland cotton lines to rainfed and irrigated conditions. We compared selected agronomic traits over time, final yield and fiber quality of cotton lines grown in irrigated and rainfed trials. Under rainfed conditions, the average number of squares per plant sharply declined during weeks 10 to 14 while the average number of bolls per plant significantly reduced during weeks 13 to 15 after planting. Therefore, weeks 10 to 14 and weeks 13 to 15 are critical plant growth stages to differentiate among upland cotton lines for square and boll set, respectively, under drought stress. Variation in square and boll set during this stage may translate into variable lint percent, lint yield and fiber properties under water-limited conditions. Lint yield and fiber quality were markedly affected under rainfed conditions in all cotton lines tested. Despite significantly reduced lint yield in rainfed trials, some cotton lines including 11-21-703S, 06-46-153P, CS 50, L23, FM 989 and DP 491 performed relatively well under stress compared to other cotton lines. The results also reveal that cotton lines show variable responses for fiber properties under irrigated and rainfed trials. Breeding line 12-8-103S produced long, uniform and strong fibers under both irrigated and rainfed conditions. The significant variation observed among cotton genotypes for agronomic characteristics, yield and fiber quality under rainfed conditions indicate potential to breed cotton for improved drought tolerance.

SELECTION OF CITATIONS
SEARCH DETAIL
...