Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Forensic Sci Int Genet ; 63: 102825, 2023 03.
Article in English | MEDLINE | ID: mdl-36592573

ABSTRACT

Equivalent amounts of compromised bones were used to directly compare STR success of conventional and Rapid DNA methods. Conventional DNA extraction methods, including manual full demineralization and semi-automated PrepFiler BTA/ AutoMate Express (ThermoFisher Scientific), provided insights regarding the DNA quantity and extent of degradation of each compromised bone analyzed with ANDE 6C (ANDE Corp) and RapidHIT ID (ThermoFisher Scientific) Rapid systems. Full demineralization provided higher DNA yields than extraction with the AutoMate Express for quality control (QC) and environmentally challenged bones. The degradation indices ranged from ∼1.8 to 73. Both demineralization and AutoMate Express extracts benefited from additional clean-up with NucleoSpin XS devices, which usually resulted in more alleles being detected than without further clean-up. Complete "CODIS 20″ profiles could be obtained with bone QC1 with all methods. However, among the 14 compromised bones with low DNA content, complete CODIS 20 profiles were detected for 7, 4, and 0 bones analyzed with demineralization, AutoMate Express and ANDE methods, respectively. The RapidHIT ID was the least sensitive method, providing the fewest detectable alleles for the bones tested. Whereas extracted DNA of approximately 0.1 ng can yield complete GlobalFiler STR profiles, at least 30 ng was required for complete FlexPlex 27 profiles using the ANDE 6C Rapid DNA system. In addition to being less sensitive than conventional methods, the tested Rapid DNA approaches were less predictable when attempting to improve STR success and proved to be less reliable in genotyping accuracy.


Subject(s)
Bone and Bones , DNA Fingerprinting , Microsatellite Repeats , Humans , Alleles , DNA/genetics , DNA Fingerprinting/methods
2.
Genes (Basel) ; 11(11)2020 11 04.
Article in English | MEDLINE | ID: mdl-33158032

ABSTRACT

The advent of massively parallel sequencing (MPS) in the past decade has opened the doors to mitochondrial whole-genome sequencing. Mitochondrial (mt) DNA is used in forensics due to its high copy number per cell and maternal mode of inheritance. Consequently, we have implemented the Thermo Fisher Precision ID mtDNA Whole Genome panel coupled with the Ion Chef™ and Ion S5™ for MPS analysis in the California Department of Justice, Missing Persons DNA Program. Thirty-one mostly challenging samples (degraded, inhibited, low template, or mixed) were evaluated for this study. The majority of these samples generated single source full or partial genome sequences with MPS, providing information in cases where previously there was none. The quantitative and sensitive nature of MPS analysis was beneficial, but also led to detection of low-level contaminants. In addition, we found Precision ID to be more susceptible to inhibition than our legacy Sanger assay. Overall, the success rate (full single source hypervariable regions I and II (HVI/HVII) for Sanger and control region for MPS result) for these challenging samples increased from 32.3% with Sanger sequencing to 74.2% with the Precision ID assay. Considering the increase in success rate, the simple workflow and the higher discriminating potential of whole genome data, the Precision ID platform is a significant improvement for the CA Department of Justice Missing Persons DNA Program.


Subject(s)
DNA, Mitochondrial/genetics , Forensic Genetics/methods , Sequence Analysis, DNA/methods , Base Sequence/genetics , DNA Fingerprinting/methods , DNA, Mitochondrial/analysis , Genome, Mitochondrial/genetics , Genotype , Haplotypes/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Mitochondria/genetics , Whole Genome Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...