Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Carcinog ; 61(7): 677-689, 2022 07.
Article in English | MEDLINE | ID: mdl-35472679

ABSTRACT

The Src tyrosine kinase is a strong tumor promotor. Over a century of research has elucidated fundamental mechanisms that drive its oncogenic potential. Src phosphorylates effector proteins to promote hallmarks of tumor progression. For example, Src associates with the Cas focal adhesion adaptor protein to promote anchorage independent cell growth. In addition, Src phosphorylates Cas to induce Pdpn expression to promote cell migration. Pdpn is a transmembrane receptor that can independently increase cell migration in the absence of oncogenic Src kinase activity. However, to our knowledge, effects of Src kinase activity on anchorage independent cell growth and migration have not been examined in the absence of Pdpn expression. Here, we analyzed the effects of an inducible Src kinase construct in knockout cells with and without exogenous Pdpn expression on cell morphology migration and anchorage independent growth. We report that Src promoted anchorage independent cell growth in the absence of Pdpn expression. In contrast, Src was not able to promote cell migration in the absence of Pdpn expression. In addition, continued Src kinase activity was required for cells to assume a transformed morphology since cells reverted to a nontransformed morphology upon cessation of Src kinase activity. We also used phosphoproteomic analysis to identify 28 proteins that are phosphorylated in Src transformed cells in a Pdpn dependent manner. Taken together, these data indicate that Src utilizes Pdpn to promote transformed cell growth and motility in complementary, but parallel, as opposed to serial, pathways.


Subject(s)
Neoplasms , src-Family Kinases , Cell Adhesion , Cell Movement , Humans , Phosphorylation , src-Family Kinases/genetics , src-Family Kinases/metabolism
2.
Cell Commun Signal ; 20(1): 19, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177067

ABSTRACT

BACKGROUND: The Src tyrosine kinase phosphorylates effector proteins to induce expression of the podoplanin (PDPN) receptor in order to promote tumor progression. However, nontransformed cells can normalize the growth and morphology of neighboring transformed cells. Transformed cells must escape this process, called "contact normalization", to become invasive and malignant. Contact normalization requires junctional communication between transformed and nontransformed cells. However, specific junctions that mediate this process have not been defined. This study aimed to identify junctional proteins required for contact normalization. METHODS: Src transformed cells and oral squamous cell carcinoma cells were cultured with nontransformed cells. Formation of heterocellular adherens junctions between transformed and nontransformed cells was visualized by fluorescent microscopy. CRISPR technology was used to produce cadherin deficient and cadherin competent nontransformed cells to determine the requirement for adherens junctions during contact normalization. Contact normalization of transformed cells cultured with cadherin deficient or cadherin competent nontransformed cells was analyzed by growth assays, immunofluorescence, western blotting, and RNA-seq. In addition, Src transformed cells expressing PDPN under a constitutively active exogenous promoter were used to examine the ability of PDPN to override contact normalization. RESULTS: We found that N-cadherin (N-Cdh) appeared to mediate contact normalization. Cadherin competent cells that expressed N-Cdh inhibited the growth of neighboring transformed cells in culture, while cadherin deficient cells failed to inhibit the growth of these cells. Results from RNA-seq analysis indicate that about 10% of the transcripts affected by contact normalization relied on cadherin mediated communication, and this set of genes includes PDPN. In contrast, cadherin deficient cells failed to inhibit PDPN expression or normalize the growth of adjacent transformed cells. These data indicate that nontransformed cells formed heterocellular cadherin junctions to inhibit PDPN expression in adjacent transformed cells. Moreover, we found that PDPN enabled transformed cells to override the effects of contact normalization in the face of continued N-Cdh expression. Cadherin competent cells failed to normalize the growth of transformed cells expressing PDPN under a constitutively active exogenous promoter. CONCLUSIONS: Nontransformed cells form cadherin junctions with adjacent transformed cells to decrease PDPN expression in order to inhibit tumor cell proliferation. Cancer begins when a single cell acquires changes that enables them to form tumors. During these beginning stages of cancer development, normal cells surround and directly contact the cancer cell to prevent tumor formation and inhibit cancer progression. This process is called contact normalization. Cancer cells must break free from contact normalization to progress into a malignant cancer. Contact normalization is a widespread and powerful process; however, not much is known about the mechanisms involved in this process. This work identifies proteins required to form contacts between normal cells and cancer cells, and explores pathways by which cancer cells override contact normalization to progress into malignant cancers. Video Abstract.


Subject(s)
Antigens, CD , Cadherins , Mouth Neoplasms , Squamous Cell Carcinoma of Head and Neck , Adherens Junctions/metabolism , Antigens, CD/metabolism , Cadherins/metabolism , Cell Transformation, Neoplastic , Humans , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology
3.
Exp Cell Res ; 403(1): 112594, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33823179

ABSTRACT

COVID-19 was declared an international public health emergency in January, and a pandemic in March of 2020. There are over 125 million confirmed COVID-19 cases that have caused over 2.7 million deaths worldwide as of March 2021. COVID-19 is caused by the SARS-CoV-2 virus. SARS-CoV-2 presents a surface "spike" protein that binds to the ACE2 receptor to infect host cells. In addition to the respiratory tract, SARS-Cov-2 can also infect cells of the oral mucosa, which also express the ACE2 receptor. The spike and ACE2 proteins are highly glycosylated with sialic acid modifications that direct viral-host interactions and infection. Maackia amurensis seed lectin (MASL) has a strong affinity for sialic acid modified proteins and can be used as an antiviral agent. Here, we report that MASL targets the ACE2 receptor, decreases ACE2 expression and glycosylation, suppresses binding of the SARS-CoV-2 spike protein, and decreases expression of inflammatory mediators by oral epithelial cells that cause ARDS in COVID-19 patients. In addition, we report that MASL also inhibits SARS-CoV-2 infection of kidney epithelial cells in culture. This work identifies MASL as an agent with potential to inhibit SARS-CoV-2 infection and COVID-19 related inflammatory syndromes.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Lectins/pharmacology , Mouth/drug effects , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/drug effects , Disease Progression , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Host Microbial Interactions/drug effects , Humans , Maackia/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism
4.
J Cancer Res Clin Oncol ; 147(2): 445-457, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33205348

ABSTRACT

PURPOSE: Oral cancer causes over 120,000 deaths annually and affects the quality of life for survivors. Over 90% of oral cancers are derived from oral squamous cell carcinoma cells (OSCCs) which are generally resistant to standard cytotoxic chemotherapy agents. OSCC cells often exhibit increased TGFß and PDPN receptor activity compared to nontransformed oral epithelial cells. Maackia amurensis seed lectin (MASL) can target the PDPN receptor and has been identified as a novel agent that can be used to treat oral cancer. However, mechanisms by which MASL inhibits OSCC progression are not yet clearly defined. METHODS: Here, we performed cell migration and cytotoxicity assays to assess the effects of MASL on OSCC motility and viability at physiologically relevant concentrations. We then performed comprehensive transcriptome analysis combined with transcription factor reporter assays to investigate the how MASL affects OSCC gene expression at these concentration. Key data were then confirmed by western blotting to evaluate the effects of MASL on gene expression and kinase signaling activity at the protein level. RESULTS: MASL significantly affected the expression of about 27% of approximately 15,000 genes found to be expressed by HSC-2 cells used to model OSCC cells in this study. These genes affected by MASL include members of the TGFß-SMAD, JAK-STAT, and Wnt-ßCTN signaling pathways. In particular, MASL decreased expression of PDPN, SOX2, and SMAD5 at the RNA and protein levels. MASL also inhibited SMAD and MAPK activity, and exhibited potential for combination therapy with doxorubicin and 5-fluorouracil. CONCLUSIONS: Taken together, results from this study indicate that MASL decreases activity of JAK-STAT, TGFß-SMAD, and Wnt-ßCTN signaling pathways to inhibit OSCC growth and motility. These data suggest that further studies should be undertaken to determine how MASL may also be used alone and in combination with other agents to treat oral cancer.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , Maackia/chemistry , Mouth Neoplasms/drug therapy , Plant Lectins/pharmacology , Squamous Cell Carcinoma of Head and Neck/drug therapy , Cell Movement/drug effects , Humans , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Plant Lectins/therapeutic use , SOXB1 Transcription Factors/genetics , Signal Transduction/drug effects , Smad Proteins/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Transcription, Genetic/drug effects , Wnt Signaling Pathway/drug effects
5.
Res Sq ; 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33106801

ABSTRACT

COVID-19 was declared an international public health emergency in January, and a pandemic in March of 2020. There are over 23 million confirmed COVID-19 cases that have cause over 800 thousand deaths worldwide as of August 19th, 2020. COVID-19 is caused by the SARS-CoV-2 virus. SARS-CoV-2 presents a surface "spike" protein that binds to the ACE2 receptor to infect host cells. In addition to the respiratory tract, SARS-Cov-2 can also infect cells of the oral mucosa, which also express the ACE2 receptor. The spike and ACE2 proteins are highly glycosylated with sialic acid modifications that direct viral-host interactions and infection. Maackia amurensis seed lectin (MASL) has a strong affinity for sialic acid modified proteins and can be used as an antiviral agent. Here, we report that MASL targets the ACE2 receptor, decreases ACE2 expression and glycosylation, suppresses binding of the SARS-CoV-2 spike protein, and decreases expression of inflammatory mediators by oral epithelial cells that cause ARDS in COVID-19 patients. This work identifies MASL as an agent with potential to inhibit SARS-CoV-2 infection and COVID-19 related inflammatory syndromes.

6.
Oral Oncol ; 78: 126-136, 2018 03.
Article in English | MEDLINE | ID: mdl-29496040

ABSTRACT

Oral cancer has become one of the most aggressive types of cancer, killing 140,000 people worldwide every year. Current treatments for oral cancer include surgery and radiation therapies. These procedures can be very effective; however, they can also drastically decrease the quality of life for survivors. New chemotherapeutic treatments are needed to more effectively combat oral cancer. The transmembrane receptor podoplanin (PDPN) has emerged as a functionally relevant oral cancer biomarker and chemotherapeutic target. PDPN expression promotes tumor cell migration leading to oral cancer invasion and metastasis. Here, we describe the role of PDPN in oral squamous cell carcinoma progression, and how it may be exploited to prevent and treat oral cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/metabolism , Membrane Glycoproteins/metabolism , Mouth Neoplasms/metabolism , Animals , Carcinoma, Squamous Cell/pathology , Humans , Mouth Neoplasms/pathology
7.
Cancer Sci ; 109(5): 1292-1299, 2018 May.
Article in English | MEDLINE | ID: mdl-29575529

ABSTRACT

Podoplanin (PDPN) is a transmembrane receptor glycoprotein that is upregulated on transformed cells, cancer associated fibroblasts and inflammatory macrophages that contribute to cancer progression. In particular, PDPN increases tumor cell clonal capacity, epithelial mesenchymal transition, migration, invasion, metastasis and inflammation. Antibodies, CAR-T cells, biologics and synthetic compounds that target PDPN can inhibit cancer progression and septic inflammation in preclinical models. This review describes recent advances in how PDPN may be used as a biomarker and therapeutic target for many types of cancer, including glioma, squamous cell carcinoma, mesothelioma and melanoma.


Subject(s)
Antineoplastic Agents/pharmacology , Membrane Glycoproteins/genetics , Neoplasms/genetics , Up-Regulation , Antineoplastic Agents/therapeutic use , Cancer-Associated Fibroblasts/metabolism , Cell Line, Tumor , Cell Movement , Disease Progression , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Membrane Glycoproteins/metabolism , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/metabolism , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...