Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Nanotechnol ; 11(6): 942-50, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26353584

ABSTRACT

In this work, the biocompatibility and antibacterial activities of novel SnO2 nanowire coatings prepared by electron-beam (E-Beam) evaporation process at low temperatures were studied. The nanowire coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and X-ray diffraction (XRD) methods. The results of in vitro cytotoxicity and cell proliferation assays suggested that the SnO2 nanowire coatings were nontoxic and promoted the proliferation of C2C12 and L929 cells (> 90% viability). Cellular activities, cell adhesion, and lactate dehydrogenase activities were consistent with the superior biocompatibility of the nanowire materials. Notably, the nanowire coating showed potent antibacterial activity against six different bacterial strains. The antibacterial activity of the SnO2 material was attributed to the photocatalytic nature of SnO2. The antibacterial activity and biocompatibility of the newly developed SnO2 nanowire coatings may enable their use as coating materials for biomedical implants.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Biocompatible Materials/chemical synthesis , Nanotechnology/methods , Nanowires/chemistry , Tin Compounds/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Apoptosis/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Proliferation/drug effects , Cells, Cultured , Lasers , Materials Testing , Mice , Microbial Sensitivity Tests , Surface Properties , Tin Compounds/chemical synthesis , Tin Compounds/pharmacology , Titanium/chemistry , Volatilization , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...