Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Intell Neurosci ; 2022: 5872401, 2022.
Article in English | MEDLINE | ID: mdl-35909868

ABSTRACT

EEG, or Electroencephalogram, is an instrument that examines the brain's functions while it is executing any activity. EEG signals to aid in the identification of brain processes and movements and are thus useful in the detection of neurobiological illnesses. Pulses have a very weak magnitude and are recorded from peak to peak, with pulse width ranging from 0.5 to 100 V, which is around 100 times below than ECG signals. As a result, many types of noise can easily influence them. Because EEG signals are so important in detecting brain illnesses, it is critical to preprocess them for accurate assessment and detection. The crown of your head The EEG is a weighted combination of the signals generated by the different small locations beneath the electrodes on the cortical plate. The rhythm of electrical impulses is useful for evaluating a broad range of brain diseases. Hypertension, Alzheimer, and brain damage are all possibilities. We can compare and distinguish the brainwaves for different emotions and illnesses linked with the brain by studying the EEG signal. Multiple research studies and methodologies for preprocessing, extraction of features, and evaluation of EEG data have recently been created. The use of EEG in human-computer communication could be a novel and demanding field that has acquired traction in recent years. We present predictive modeling for analyzing the customer's preference of likes and dislikes via EEG signal in our report. The impulses were obtained when clients used the Internet to seek for multiple items. The studies were carried out on a dataset that included a variety of consumer goods.


Subject(s)
Brain Waves , Signal Processing, Computer-Assisted , Brain , Electroencephalography/methods , Humans , Neural Networks, Computer
2.
J Healthc Eng ; 2022: 5691203, 2022.
Article in English | MEDLINE | ID: mdl-35047153

ABSTRACT

In 6G edge communication networks, the machine learning models play a major role in enabling intelligent decision-making in case of optimal resource allocation in case of the healthcare system. However, it causes a bottleneck, in the form of sophisticated memory calculations, between the hidden layers and the cost of communication between the edge devices/edge nodes and the cloud centres, while transmitting the data from the healthcare management system to the cloud centre via edge nodes. In order to reduce these hurdles, it is important to share workloads to further eliminate the problems related to complicated memory calculations and transmission costs. The effort aims mainly to reduce storage costs and cloud computing associated with neural networks as the complexity of the computations increases with increasing numbers of hidden layers. This study modifies federated teaching to function with distributed assignment resource settings as a distributed deep learning model. It improves the capacity to learn from the data and assigns an ideal workload depending on the limited available resources, slow network connection, and more edge devices. Current network status can be sent to the cloud centre by the edge devices and edge nodes autonomously using cybertwin, meaning that local data are often updated to calculate global data. The simulation shows how effective resource management and allocation is better than standard approaches. It is seen from the results that the proposed method achieves higher resource utilization and success rate than existing methods. Index Terms are fuzzy, healthcare, bioinformatics, 6G wireless communication, cybertwin, machine learning, neural network, and edge.


Subject(s)
Cloud Computing , Delivery of Health Care , Computer Simulation , Humans , Resource Allocation , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...