Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7387, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37968278

ABSTRACT

Plasmodium falciparum malaria drives immunoregulatory responses across multiple cell subsets, which protects from immunopathogenesis, but also hampers the development of effective anti-parasitic immunity. Understanding malaria induced tolerogenic responses in specific cell subsets may inform development of strategies to boost protective immunity during drug treatment and vaccination. Here, we analyse the immune landscape with single cell RNA sequencing during P. falciparum malaria. We identify cell type specific responses in sub-clustered major immune cell types. Malaria is associated with an increase in immunosuppressive monocytes, alongside NK and γδ T cells which up-regulate tolerogenic markers. IL-10-producing Tr1 CD4 T cells and IL-10-producing regulatory B cells are also induced. Type I interferon responses are identified across all cell types, suggesting Type I interferon signalling may be linked to induction of immunoregulatory networks during malaria. These findings provide insights into cell-specific and shared immunoregulatory changes during malaria and provide a data resource for further analysis.


Subject(s)
Interferon Type I , Malaria, Falciparum , Malaria , Humans , Interleukin-10/genetics , Transcriptome , Interferon Type I/genetics , Plasmodium falciparum/genetics , T-Lymphocyte Subsets
2.
mBio ; 14(4): e0112923, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37449844

ABSTRACT

Maturation rates of malaria parasites within red blood cells (RBCs) can be influenced by host nutrient status and circadian rhythm; whether host inflammatory responses can also influence maturation remains less clear. Here, we observed that systemic host inflammation induced in mice by an innate immune stimulus, lipopolysaccharide (LPS), or by ongoing acute Plasmodium infection, slowed the progression of a single cohort of parasites from one generation of RBC to the next. Importantly, plasma from LPS-conditioned or acutely infected mice directly inhibited parasite maturation during in vitro culture, which was not rescued by supplementation, suggesting the emergence of inhibitory factors in plasma. Metabolomic assessments confirmed substantial alterations to the plasma of LPS-conditioned and acutely infected mice, and identified a small number of candidate inhibitory metabolites. Finally, we confirmed rapid parasite responses to systemic host inflammation in vivo using parasite scRNA-seq, noting broad impairment in transcriptional activity and translational capacity specifically in trophozoites but not rings or schizonts. Thus, we provide evidence that systemic host inflammation rapidly triggered transcriptional alterations in circulating blood-stage Plasmodium trophozoites and predict candidate inhibitory metabolites in the plasma that may impair parasite maturation in vivo. IMPORTANCE Malaria parasites cyclically invade, multiply, and burst out of red blood cells. We found that a strong inflammatory response can cause changes to the composition of host plasma, which directly slows down parasite maturation. Thus, our work highlights a new mechanism that limits malaria parasite growth in the bloodstream.


Subject(s)
Malaria , Parasites , Mice , Animals , Transcriptome , Lipopolysaccharides , Malaria/parasitology , Inflammation , Erythrocytes/parasitology
3.
Nat Commun ; 13(1): 4159, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35851033

ABSTRACT

T-follicular helper (Tfh) cells are key drivers of antibodies that protect from malaria. However, little is known regarding the host and parasite factors that influence Tfh and functional antibody development. Here, we use samples from a large cross-sectional study of children residing in an area of high malaria transmission in Uganda to characterize Tfh cells and functional antibodies to multiple parasites stages. We identify a dramatic re-distribution of the Tfh cell compartment with age that is independent of malaria exposure, with Th2-Tfh cells predominating in early childhood, while Th1-Tfh cell gradually increase to adult levels over the first decade of life. Functional antibody acquisition is age-dependent and hierarchical acquired based on parasite stage, with merozoite responses followed by sporozoite and gametocyte antibodies. Antibodies are boosted in children with current infection, and are higher in females. The children with the very highest antibody levels have increased Tfh cell activation and proliferation, consistent with a key role of Tfh cells in antibody development. Together, these data reveal a complex relationship between the circulating Tfh compartment, antibody development and protection from malaria.


Subject(s)
Malaria , T Follicular Helper Cells , Adult , Antibodies, Protozoan , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , T-Lymphocytes, Helper-Inducer , Uganda
4.
Malar J ; 21(1): 49, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35172826

ABSTRACT

BACKGROUND: Artemisinin-based combination therapy (ACT) has been a mainstay for malaria prevention and treatment. However, emergence of drug resistance has incentivised development of new drugs. Defining the kinetics with which circulating parasitized red blood cells (pRBC) are lost after drug treatment, referred to as the "parasite clearance curve", has been critical for assessing drug efficacy; yet underlying mechanisms remain partly unresolved. The clearance curve may be shaped both by the rate at which drugs kill parasites, and the rate at which drug-affected parasites are removed from circulation. METHODS: In this context, two anti-malarials, SJ733, and an ACT partner drug, pyronaridine were compared against sodium artesunate in mice infected with Plasmodium berghei (strain ANKA). To measure each compound's capacity for pRBC removal in vivo, flow cytometric monitoring of a single cohort of fluorescently-labelled pRBC was employed, and combined with ex vivo parasite culture to assess parasite maturation and replication. RESULTS: These three compounds were found to be similarly efficacious in controlling established infection by reducing overall parasitaemia. While sodium artesunate acted relatively consistently across the life-stages, single-dose SJ733 elicited a biphasic effect, triggering rapid, partly phagocyte-dependent removal of trophozoites and schizonts, followed by arrest of residual ring-stages. In contrast, pyronaridine abrogated maturation of younger parasites, with less pronounced effects on mature parasites, while modestly increasing pRBC removal. CONCLUSIONS: Anti-malarials SJ733 and pyronaridine, though similarly efficacious in reducing overall parasitaemia in mice, differed markedly in their capacity to arrest replication and remove pRBC from circulation. Thus, similar parasite clearance curves can result for anti-malarials with distinct capacities to inhibit, kill and clear parasites.


Subject(s)
Antimalarials , Malaria , Parasites , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Combinations , Heterocyclic Compounds, 4 or More Rings , Isoquinolines , Malaria/drug therapy , Malaria/parasitology , Mice , Naphthyridines
5.
Cell Rep Med ; 1(9): 100157, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33377128

ABSTRACT

CD4+ T follicular helper cells (Tfh) are key drivers of antibody development. During Plasmodium falciparum malaria in children, the activation of Tfh is restricted to the Th1 subset and not associated with antibody levels. To identify Tfh subsets that are associated with antibody development in malaria, we assess Tfh and antibodies longitudinally in human volunteers with experimental P. falciparum infection. Tfh cells activate during infection, with distinct dynamics in different Tfh subsets. Th2-Tfh cells activate early, during peak infection, while Th1-Tfh cells activate 1 week after peak infection and treatment. Th2-Tfh cell activation is associated with the functional breadth and magnitude of parasite antibodies. In contrast, Th1-Tfh activation is not associated with antibody development but instead with plasma cells, which have previously been shown to play a detrimental role in the development of long-lived immunity. Thus, our study identifies the contrasting roles of Th2 and Th1-Tfh cells during experimental P. falciparum malaria.


Subject(s)
Antibody Formation/immunology , Malaria, Falciparum/microbiology , Plasmodium falciparum/microbiology , T Follicular Helper Cells/immunology , T-Lymphocytes, Helper-Inducer/immunology , Humans , Lymphocyte Activation/immunology , T Follicular Helper Cells/microbiology , T-Lymphocytes, Helper-Inducer/microbiology , Th1 Cells/immunology , Th1 Cells/microbiology
6.
Clin Transl Immunology ; 9(6): e1144, 2020.
Article in English | MEDLINE | ID: mdl-32566226

ABSTRACT

OBJECTIVES: Malaria, caused by Plasmodium infection, remains a major global health problem. Monocytes are integral to the immune response, yet their transcriptional and functional responses in primary Plasmodium falciparum infection and in clinical malaria are poorly understood. METHODS: The transcriptional and functional profiles of monocytes were examined in controlled human malaria infection with P. falciparum blood stages and in children and adults with acute malaria. Monocyte gene expression and functional phenotypes were examined by RNA sequencing and flow cytometry at peak infection and compared to pre-infection or at convalescence in acute malaria. RESULTS: In subpatent primary infection, the monocyte transcriptional profile was dominated by an interferon (IFN) molecular signature. Pathways enriched included type I IFN signalling, innate immune response and cytokine-mediated signalling. Monocytes increased TNF and IL-12 production upon in vitro toll-like receptor stimulation and increased IL-10 production upon in vitro parasite restimulation. Longitudinal phenotypic analyses revealed sustained significant changes in the composition of monocytes following infection, with increased CD14+CD16- and decreased CD14-CD16+ subsets. In acute malaria, monocyte CD64/FcγRI expression was significantly increased in children and adults, while HLA-DR remained stable. Although children and adults showed a similar pattern of differentially expressed genes, the number and magnitude of gene expression change were greater in children. CONCLUSIONS: Monocyte activation during subpatent malaria is driven by an IFN molecular signature with robust activation of genes enriched in pathogen detection, phagocytosis, antimicrobial activity and antigen presentation. The greater magnitude of transcriptional changes in children with acute malaria suggests monocyte phenotypes may change with age or exposure.

7.
Malar J ; 18(1): 312, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31533836

ABSTRACT

BACKGROUND: Anaemia is a major consequence of malaria, caused by the removal of both infected and uninfected red blood cells (RBCs) from the circulation. Complement activation and reduced expression of complement regulatory proteins (CRPs) on RBCs are an important pathogenic mechanism in severe malarial anaemia in both Plasmodium falciparum and Plasmodium vivax infection. However, little is known about loss of CRPs on RBCs during mild malarial anaemia and in low-density infection. METHODS: The expression of CRP CR1, CD55, CD59, and the phagocytic regulator CD47, on uninfected normocytes and reticulocytes were assessed in individuals from two study populations: (1) P. falciparum and P. vivax-infected patients from a low transmission setting in Sabah, Malaysia; and, (2) malaria-naïve volunteers undergoing P. falciparum induced blood-stage malaria (IBSM). For clinical infections, individuals were categorized into anaemia severity categories based on haemoglobin levels. For IBSM, associations between CRPs and haemoglobin level were investigated. RESULTS: CRP expression on RBC was lower in Malaysian individuals with P. falciparum and P. vivax mild malarial anaemia compared to healthy controls. CRP expression was also reduced on RBCs from volunteers during IBSM. Reduction occurred on normocytes and reticulocytes. However, there was no significant association between reduced CRPs and haemoglobin during IBSM. CONCLUSIONS: Removal of CRPs occurs on both RBCs and reticulocytes during Plasmodium infection even in mild malarial anaemia and at low levels of parasitaemia.


Subject(s)
Anemia/parasitology , Complement System Proteins/genetics , Erythrocytes/metabolism , Malaria, Falciparum/complications , Malaria, Vivax/complications , Adult , Complement System Proteins/metabolism , Erythrocytes/parasitology , Female , Humans , Malaria, Falciparum/parasitology , Malaria, Vivax/parasitology , Malaysia , Male , Middle Aged , Plasmodium falciparum/physiology , Plasmodium vivax/physiology , Young Adult
8.
PLoS Pathog ; 15(2): e1007599, 2019 02.
Article in English | MEDLINE | ID: mdl-30811498

ABSTRACT

Plasmodium parasites invade and multiply inside red blood cells (RBC). Through a cycle of maturation, asexual replication, rupture and release of multiple infective merozoites, parasitised RBC (pRBC) can reach very high numbers in vivo, a process that correlates with disease severity in humans and experimental animals. Thus, controlling pRBC numbers can prevent or ameliorate malaria. In endemic regions, circulating parasite-specific antibodies associate with immunity to high parasitemia. Although in vitro assays reveal that protective antibodies could control pRBC via multiple mechanisms, in vivo assessment of antibody function remains challenging. Here, we employed two mouse models of antibody-mediated immunity to malaria, P. yoelii 17XNL and P. chabaudi chabaudi AS infection, to study infection-induced, parasite-specific antibody function in vivo. By tracking a single generation of pRBC, we tested the hypothesis that parasite-specific antibodies accelerate pRBC clearance. Though strongly protective against homologous re-challenge, parasite-specific IgG did not alter the rate of pRBC clearance, even in the presence of ongoing, systemic inflammation. Instead, antibodies prevented parasites progressing from one generation of RBC to the next. In vivo depletion studies using clodronate liposomes or cobra venom factor, suggested that optimal antibody function required splenic macrophages and dendritic cells, but not complement C3/C5-mediated killing. Finally, parasite-specific IgG bound poorly to the surface of pRBC, yet strongly to structures likely exposed by the rupture of mature schizonts. Thus, in our models of humoral immunity to malaria, infection-induced antibodies did not accelerate pRBC clearance, and instead co-operated with splenic phagocytes to block subsequent generations of pRBC.


Subject(s)
Malaria/immunology , Malaria/metabolism , Plasmodium/growth & development , Animals , Antibodies, Protozoan/metabolism , Disease Models, Animal , Erythrocytes/microbiology , Erythrocytes/physiology , Humans , Mice , Parasites , Phagocytes , Plasmodium/metabolism , Plasmodium/pathogenicity , Plasmodium chabaudi/immunology , Plasmodium chabaudi/pathogenicity , Plasmodium yoelii/immunology , Plasmodium yoelii/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...