Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 4: 1966, 2013.
Article in English | MEDLINE | ID: mdl-23739662

ABSTRACT

The developmental potency of mouse embryonic stem (ES) cells, which is the ability to contribute to a whole embryo, is known to deteriorate during long-term cell culture. Previously, we have shown that ES cells oscillate between Zscan4(-) and Zscan4(+) states, and the transient activation of Zscan4 is required for the maintenance of telomeres and genome stability of ES cells. Here we show that increasing the frequency of Zscan4 activation in mouse ES cells restores and maintains their developmental potency in long-term cell culture. Injection of a single ES cell with such increased potency into a tetraploid blastocyst gives rise to an entire embryo with a higher success rate. These results not only provide a means to rejuvenate ES cells by manipulating Zscan4 expression, but also indicate the active roles of Zscan4 in the long-term maintenance of ES cell potency.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Transcription Factors/metabolism , Animals , Cell Line , Female , Male , Mice , Mice, Inbred C57BL , Polyploidy , Recombinant Fusion Proteins/metabolism , Reproducibility of Results , Telomere/metabolism
2.
Sci Rep ; 3: 1390, 2013.
Article in English | MEDLINE | ID: mdl-23462645

ABSTRACT

Networks of transcription factors (TFs) are thought to determine and maintain the identity of cells. Here we systematically repressed each of 100 TFs with shRNA and carried out global gene expression profiling in mouse embryonic stem (ES) cells. Unexpectedly, only the repression of a handful of TFs significantly affected transcriptomes, which changed in two directions/trajectories: one trajectory by the repression of either Pou5f1 or Sox2; the other trajectory by the repression of either Esrrb, Sall4, Nanog, or Tcfap4. The data suggest that the trajectories of gene expression change are already preconfigured by the gene regulatory network and roughly correspond to extraembryonic and embryonic fates of cell differentiation, respectively. These data also indicate the robustness of the pluripotency gene network, as the transient repression of most TFs did not alter the transcriptomes.


Subject(s)
Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental , Transcription Factors/genetics , Animals , Cluster Analysis , Gene Expression Profiling , Gene Silencing , Mice , Models, Biological , RNA Interference , Transcription Factors/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL