Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 14(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38672472

ABSTRACT

Adversity during infancy can affect neurobehavioral development and perturb the maturation of physiological systems. Dysregulated immune and inflammatory responses contribute to many of the later effects on health. Whether normalization can occur following a transition to more nurturing, benevolent conditions is unclear. To assess the potential for recovery, blood samples were obtained from 45 adolescents adopted by supportive families after impoverished infancies in institutional settings (post-institutionalized, PI). Their immune profiles were compared to 39 age-matched controls raised by their biological parents (non-adopted, NA). Leukocytes were immunophenotyped, and this analysis focuses on natural killer (NK) cell populations in circulation. Cytomegalovirus (CMV) seropositivity was evaluated to determine if early infection contributed to the impact of an atypical rearing. Associations with tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), two cytokines released by activated NK cells, were examined. Compared to the NA controls, PI adolescents had a lower percent of CD56bright NK cells in circulation, higher TNF-α levels, and were more likely to be infected with CMV. PI adolescents who were latent carriers of CMV expressed NKG2C and CD57 surface markers on more NK cells, including CD56dim lineages. The NK cell repertoire revealed lingering immune effects of early rearing while still maintaining an overall integrity and resilience.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Killer Cells, Natural , Tumor Necrosis Factor-alpha , Killer Cells, Natural/immunology , Humans , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Adolescent , Female , Male , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/metabolism , Cytomegalovirus/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , NK Cell Lectin-Like Receptor Subfamily C/metabolism , CD56 Antigen/metabolism , CD57 Antigens/metabolism
2.
Breast Cancer Res ; 18(1): 49, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27169366

ABSTRACT

BACKGROUND: High mammographic density has been correlated with a 4-fold to 6-fold increased risk of developing breast cancer, and is associated with increased stromal deposition of extracellular matrix proteins, including collagen I. The molecular and cellular mechanisms responsible for high breast tissue density are not completely understood. METHODS: We previously described accelerated tumor formation and metastases in a transgenic mouse model of collagen-dense mammary tumors (type I collagen-α1 (Col1α1)(tm1Jae) and mouse mammary tumor virus - polyoma virus middle T antigen (MMTV-PyVT)) compared to wild-type mice. Using ELISA cytokine arrays and multi-color flow cytometry analysis, we studied cytokine signals and the non-malignant, immune cells in the collagen-dense tumor microenvironment that may promote accelerated tumor progression and metastasis. RESULTS: Collagen-dense tumors did not show any alteration in immune cell populations at late stages. The cytokine signals in the mammary tumor microenvironment were clearly different between wild-type and collagen-dense tumors. Cytokines associated with neutrophil signaling, such as granulocyte monocyte-colony stimulated factor (GM-CSF), were increased in collagen-dense tumors. Depleting neutrophils with anti-Ly6G (1A8) significantly reduced the number of tumors, and blocked metastasis in over 80 % of mice with collagen-dense tumors, but did not impact tumor growth or metastasis in wild-type mice. CONCLUSION: Our study suggests that tumor progression in a collagen-dense microenvironment is mechanistically different, with pro-tumor neutrophils, compared to a non-dense microenvironment.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Collagen/metabolism , Neutrophils/metabolism , Neutrophils/pathology , Tumor Microenvironment , Animals , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/immunology , Collagen/genetics , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Disease Progression , Female , Gene Expression , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mammary Neoplasms, Experimental , Mice , Mice, Transgenic , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neoplasm Metastasis , Neutrophil Infiltration/immunology , Neutrophils/immunology , Positron-Emission Tomography , Spleen/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Tumor Burden , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...