Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 39(13): 2591-603, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11044729

ABSTRACT

Relationships between nicotinic acetylcholine receptor (nAChR) channel function and nAChR subunit mRNA expression were explored in acutely isolated rat medial habenula (MHb) neurons using a combination of whole-cell recording and single cell RT-PCR techniques. Following amplification using subunit-specific primers, subunits could be categorized in one of three ways: (i) present in 95-100% cells: alpha3, alpha4, alpha5, beta2 and beta4; (ii) never present: alpha2; and (iii) sometimes present ( approximately 40% cells): alpha6, alpha7 and beta3. These data imply that alpha2 subunits do not participate in nAChRs on MHb cells, that alpha6, alpha7 and beta3 subunits are not necessary for functional channels but may contribute in some cells, and that nAChRs may require combinations of all or subsets of alpha3, alpha4, alpha5, beta2 and beta4 subunits. Little difference in the patterns of subunit expression between nicotine-sensitive and insensitive cells were revealed based on this qualitative analysis, implying that gene transcription per se may be an insufficient determinant of nAChR channel function. Normalization of nAChR subunit levels to the amount of actin mRNA, however, revealed that cells with functional channels were associated with high levels (>0.78 relative to actin; 11/12 cells) of all of the category (i) subunits: alpha3, alpha4, alpha5, beta2 and beta4. Conversely, one or more of these subunits was always low (<0.40 relative to actin) in all cells with no detectable response to nicotine. Thus the formation of functional nAChR channels on MHb cells may require critical levels of several subunit mRNAs.


Subject(s)
Habenula/metabolism , Neurons/metabolism , RNA, Messenger/biosynthesis , Receptors, Nicotinic/biosynthesis , Animals , Animals, Newborn , Cell Line , Cell Separation , Electrophysiology , Habenula/cytology , Habenula/drug effects , Kidney/metabolism , Neurons/drug effects , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Oocytes , Patch-Clamp Techniques , Rats , Receptors, Nicotinic/drug effects , Reverse Transcriptase Polymerase Chain Reaction , Xenopus
2.
J Neurosci ; 19(12): 4804-14, 1999 Jun 15.
Article in English | MEDLINE | ID: mdl-10366615

ABSTRACT

It is hypothesized that desensitization of neuronal nicotinic acetylcholine receptors (nAChRs) induced by chronic exposure to nicotine initiates upregulation of nAChR number. To test this hypothesis directly, oocytes expressing alpha4beta2 receptors were chronically incubated (24-48 hr) in nicotine, and the resulting changes in specific [3H]nicotine binding to surface receptors on intact oocytes were compared with functional receptor desensitization. Four lines of evidence strongly support the hypothesis. (1) The half-maximal nicotine concentration necessary to produce desensitization (9.7 nM) was the same as that needed to induce upregulation (9.9 nM). (2) The concentration of [3H]nicotine for half-maximal binding to surface nAChRs on intact oocytes was also similar (11.1 nM), as predicted from cyclical desensitization models. (3) Functional desensitization of alpha3beta4 receptors required 10-fold higher nicotine concentrations, and this was mirrored by a 10-fold shift in concentrations necessary for upregulation. (4) Mutant alpha4beta2 receptors that do not recover fully from desensitization, but not wild-type channels, were upregulated after acute (1 hr) applications of nicotine. Interestingly, the nicotine concentration required for half-maximal binding of alpha4beta2 receptors in total cell membrane homogenates was 20-fold lower than that measured for surface nAChRs in intact oocytes. These data suggest that cell homogenate binding assays may not accurately reflect the in vivo desensitization affinity of surface nAChRs and may account for some of the previously reported differences in the efficacy of nicotine for inducing nAChR desensitization and upregulation.


Subject(s)
Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Receptors, Nicotinic/metabolism , Tobacco Use Disorder/metabolism , Animals , Binding, Competitive/physiology , Cell Membrane/chemistry , Cell Membrane/metabolism , Chronic Disease , Electrophysiology , Gene Expression Regulation/drug effects , Membrane Potentials/physiology , Mutagenesis/physiology , Oocytes/physiology , RNA, Complementary/pharmacology , Radioligand Assay , Receptors, Nicotinic/genetics , Tritium , Up-Regulation/drug effects , Up-Regulation/genetics , Xenopus
3.
Mol Pharmacol ; 55(3): 432-43, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10051526

ABSTRACT

Neuronal nicotinic acetylcholine receptor (nAChR) desensitization is hypothesized to be a trigger for long-term changes in receptor number and function observed after chronic administration of nicotine at levels similar to those found in persons who use tobacco. Factors that regulate desensitization could potentially influence the outcome of long-lasting exposure to nicotine. The roles of Ca2+ and protein kinase C (PKC) on desensitization of alpha4beta2 nAChRs expressed in Xenopus laevis oocytes were investigated. Nicotine-induced (300 nM; 30 min) desensitization of alpha4beta2 receptors in the presence of Ca2+ developed in a biphasic manner with fast and slow exponential time constants of tauf = 1.4 min (65% relative amplitude) and taus = 17 min, respectively. Recovery from desensitization was reasonably well described by a single exponential with taurec = 43 min. Recovery was largely eliminated after replacement of external Ca2+ with Ba2+ and slowed by calphostin C (taurec = 48 min), an inhibitor of PKC. Conversely, the rate of recovery was enhanced by phorbol-12-myristate-13-acetate (taurec = 14 min), a PKC activator, or by cyclosporin A (with taurec = 8 min), a phosphatase inhibitor. alpha4beta2 receptors containing a mutant alpha4 subunit that lacks a consensus PKC phosphorylation site exhibited little recovery from desensitization. Based on a two-desensitized-state cyclical model, it is proposed that after prolonged nicotine treatment, alpha4beta2 nAChRs accumulate in a "deep" desensitized state, from which recovery is very slow. We suggest that PKC-dependent phosphorylation of alpha4 subunits changes the rates governing the transitions from "deep" to "shallow" desensitized conformations and effectively increases the overall rate of recovery from desensitization. Long-lasting dephosphorylation may underlie the "permanent" inactivation of alpha4beta2 receptors observed after chronic nicotine treatment.


Subject(s)
Calcium/metabolism , Protein Kinase C/metabolism , Receptors, Nicotinic/metabolism , Second Messenger Systems , Animals , Cells, Cultured , Electrophysiology , Models, Biological , Mutagenesis , Oocytes , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phosphorylation , Rats , Receptors, Nicotinic/genetics , Second Messenger Systems/physiology , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...