Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 854, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33558559

ABSTRACT

Large optical anisotropy observed in a broad spectral range is of paramount importance for efficient light manipulation in countless devices. Although a giant anisotropy has been recently observed in the mid-infrared wavelength range, for visible and near-infrared spectral intervals, the problem remains acute with the highest reported birefringence values of 0.8 in BaTiS3 and h-BN crystals. This issue inspired an intensive search for giant optical anisotropy among natural and artificial materials. Here, we demonstrate that layered transition metal dichalcogenides (TMDCs) provide an answer to this quest owing to their fundamental differences between intralayer strong covalent bonding and weak interlayer van der Waals interaction. To do this, we made correlative far- and near-field characterizations validated by first-principle calculations that reveal a huge birefringence of 1.5 in the infrared and 3 in the visible light for MoS2. Our findings demonstrate that this remarkable anisotropy allows for tackling the diffraction limit enabling an avenue for on-chip next-generation photonics.

2.
Nano Lett ; 15(3): 1952-8, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25621936

ABSTRACT

The possibility of achieving optical magnetism at visible frequencies using plasmonic nanostructures has recently been a subject of great interest. The concept is based on designing structures that support plasmon modes with electron oscillation patterns that imitate current loops, that is, magnetic dipoles. However, the magnetic resonances are typically spectrally narrow, thereby limiting their applicability in, for example, metamaterial designs. We show that a significantly broader magnetic response can be realized in plasmonic pentamers constructed from metal-insulator-metal (MIM) sandwich particles. Each MIM unit acts as a magnetic meta-atom and the optical magnetism is rendered quasi-broadband through hybridization of the in-plane modes. We demonstrate that scattering spectra of individual MIM pentamers exhibit multiple Fano resonances and a broad subradiant spectral window that signals the magnetic interaction and a hierarchy of coupling effects in these intricate three-dimensional nanoparticle oligomers.

3.
ACS Nano ; 3(7): 1988-94, 2009 Jul 28.
Article in English | MEDLINE | ID: mdl-19534506

ABSTRACT

We study surface-enhanced Raman scattering (SERS) of individual organic molecules embedded in dimers of two metal nanoparticles. The good control of the dimer preparation process, based on the usage of bifunctional molecules, enables us to study quantitatively the effect of the nanoparticle size on the SERS intensity and spectrum at the single molecule level. We find that as the nanoparticle size increases the total Raman intensity increases and the lower energy Raman modes become dominant. We perform an electromagnetic calculation of the Raman enhancement and show that this behavior can be understood in terms of the overlap between the plasmonic modes of the dimer structure and the Raman spectrum. As the nanoparticle size increases, the plasmonic dipolar mode shifts to longer wavelength and thereby its overlap with the Raman spectrum changes. This suggests that the dimer structure can provide an external control of the emission properties of a single molecule. Indeed, clear and systematic differences are observed between Raman spectra of individual molecules adsorbed on small versus large particles.

4.
Eur Phys J E Soft Matter ; 12(1): 57-61, 2003 Sep.
Article in English | MEDLINE | ID: mdl-15007680

ABSTRACT

The translational and rotational dynamics of n-hexane adsorbed in ZSM-5 and 5A zeolites has been studied by neutron scattering and deuterium solid-state NMR, at various temperatures. The dynamics of n-hexane is quite different in the two zeolites. In the ZSM-5 structure, the molecule sits in channel segments, the energy barrier between adjacent adsorption sites is small and fast anisotropic motions are observed. In the 5A zeolite, the molecule is adsorbed in alpha-cages; the barrier between adjacent cages is larger so that the molecule spends a longer time exploring the volume of an alpha-cage, leading to a more isotropic motion. The diffusion coefficient of the molecule is reduced by more than 4 orders of magnitude in 5A zeolite compared with ZSM-5.

SELECTION OF CITATIONS
SEARCH DETAIL
...