Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Tumori ; 100(3): 272-7, 2014.
Article in English | MEDLINE | ID: mdl-25076237

ABSTRACT

AIMS AND BACKGROUND: Radiotherapy is the standard treatment of glioblastoma. Three-dimensional conformal radiotherapy is the standard technique to treat glioblastoma. Intensity-modulated radiotherapy and helical intensity-modulated radiotherapy (tomotherapy) are becoming widely used. The present study compared three-dimensional conformal radiotherapy, intensity-modulated radiotherapy and tomotherapy in terms of target coverage and preservation of organs at risk. METHODS: Ten patients treated with three-dimensional conformal radiotherapy, with a target volume close to or superimposed to the organs at risk, were retrospectively selected. The plans were re-planned with step-and-shoot 3/5 fields intensity-modulated radiotherapy and tomotherapy. Target coverage and sparing of organs at risk were statistically compared. RESULTS: Mean planning target volume V95% improved with sophisticated techniques (87.2%, 93.2%, 97.6% with three-dimensional conformal radiotherapy, intensity-modulated radiotherapy and tomotherapy, respectively). The comparison of three-dimensional conformal radiotherapy and intensity-modulated radiotherapy did not show significant differences, whereas differences were significant when three-dimensional conformal radiotherapy and tomotherapy as well as intensity-modulated radiotherapy and tomotherapy were compared. Mean planning target volume/clinical target volume D99-D98-D95 were not different between three-dimensional conformal radiotherapy and intensity-modulated radiotherapy, but they were different between tomotherapy and three-dimensional conformal radiotherapy and intensity-modulated radiotherapy, with better clinical target volume/and planning target volume coverage with the tomotherapy plans. Brain D33/66 were 31.1/11.8 Gy, 37.5/18.3 Gy and 28.5/14.7 Gy with three-dimensional conformal radiotherapy, intensity-modulated radiotherapy and tomotherapy, respectively. Mean brainstem, optic nerves and chiasma Dmax were always within the defined constraints. The homogeneity index improved with intensity-modulated radiotherapy/tomotherapy compared to three-dimensional conformal radiotherapy. Tomotherapy was better than intensity-modulated radiotherapy in all patients. CONCLUSIONS: In this selected group of patients, a significant dosimetric advantage was evident for tomotherapy compared with three-dimensional conformal radiotherapy and intensity-modulated radiotherapy. Significant advantages were evident in terms of panning target volume coverage (V95), D99, D98 and D95. The clinical significance of the results should be defined.


Subject(s)
Brain Neoplasms/radiotherapy , Glioblastoma/radiotherapy , Radiotherapy, Conformal/adverse effects , Radiotherapy, Conformal/methods , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Adult , Aged , Female , Humans , Imaging, Three-Dimensional , Italy , Male , Middle Aged , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Retrospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...