Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 10(2)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38391483

ABSTRACT

Terminology is pivotal for facilitating clear communication and minimizing ambiguity, especially in specialized fields such as chemistry. In materials science, a subset of chemistry, the term "pore" is traditionally linked to the International Union of Pure and Applied Chemistry (IUPAC) nomenclature, which categorizes pores into "micro", "meso", and "macro" based on size. However, applying this terminology in closely-related areas, such as 3D bioprinting, often leads to confusion owing to the lack of consensus on specific definitions and classifications tailored to each field. This review article critically examines the current use of pore terminology in the context of 3D bioprinting, highlighting the need for reassessment to avoid potential misunderstandings. We propose an alternative classification that aligns more closely with the specific requirements of bioprinting, suggesting a tentative size-based division of interconnected pores into 'parvo'-(d < 25 µm), 'medio'-(25 < d < 100 µm), and 'magno'-(d > 100 µm) pores, relying on the current understanding of the pore size role in tissue formation. The introduction of field-specific terminology for pore sizes in 3D bioprinting is essential to enhance the clarity and precision of research communication. This represents a step toward a more cohesive and specialized lexicon that aligns with the unique aspects of bioprinting and tissue engineering.

2.
Bioengineering (Basel) ; 10(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37370635

ABSTRACT

Gelatin-based hydrogels have emerged as a popular scaffold material for tissue engineering applications. The introduction of variable crosslinking methods has shown promise for fabricating stable cell-laden scaffolds. In this work, we examine promising composite biopolymer-based inks for extrusion-based 3D bioprinting, using a dual crosslinking approach. A combination of carefully selected printable hydrogel ink compositions and the use of photoinduced covalent and ionic crosslinking mechanisms allows for the fabrication of scaffolds of high accuracy and low cytotoxicity, resulting in unimpeded cell proliferation, extracellular matrix deposition, and mineralization. Three selected bioink compositions were characterized and the respective cell-laden scaffolds were bioprinted. Temporal stability, morphology, swelling, and mechanical properties of the scaffolds were thoroughly studied and the biocompatibility of the constructs was assessed using rat mesenchymal stem cells while focusing on osteogenesis. Experimental results showed that the composition of 1% alginate, 4% gelatin, and 5% (w/v) gelatine methacrylate, was found to be optimal among the examined, with shape fidelity of 88%, large cell spreading area and cell viability at around 100% after 14 days. The large pore diameters that exceed 100 µm, and highly interconnected scaffold morphology, make these hydrogels extremely potent in bone tissue engineering and bone organoid fabrication.

SELECTION OF CITATIONS
SEARCH DETAIL
...