Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(12): e0290684, 2023.
Article in English | MEDLINE | ID: mdl-38091331

ABSTRACT

Wheat plays a crucial role in global food security, serving as a vital food crop that feeds billions of people worldwide. Currently, Russia and Ukraine are responsible for exporting approximately 25% of the world's wheat, making any issues in these regions a cause for concern regarding global wheat supply. The problems faced in these areas have led to a surge in wheat prices worldwide. Consequently, it becomes necessary to explore alternative regions that can compensate for the decline in wheat production and supply. This study focuses on wheat production and yield in major producing countries, utilizing the GYGA (Global Yield Gap Atlas) protocol for predictions. The findings reveal a global wheat production gap of 270,378,793 tons. Notably, the largest gap in irrigated wheat production exists in countries like China, India, Pakistan, Turkey, Iran, Afghanistan, Uzbekistan, Egypt, and Azerbaijan. Additionally, the rainfed wheat production gap on a global scale amounts to 545,215,692 tons, with Russia, the USA, Kazakhstan, Australia, Ukraine, China, Turkey, Canada, India, and France having the most significant production gaps. Through boundary line analysis, specific criteria were identified for suitable areas of irrigated and rainfed wheat cultivation. For irrigated conditions, the temperature range of 3000 to 7000 GDD (Growing Degree Days) and a temperature seasonality of 3 were determined as favorable. Under rainfed conditions, the suitable areas encompass a temperature range of 2000 to 4000 GDD, an aridity index exceeding 600, and a temperature seasonality of 2. Thirteen countries possess extensive agricultural land within the climatic codes favorable for irrigated wheat cultivation. Approximately 50% of the agricultural lands within these countries, corresponding to the total arable area for irrigated wheat, fall within the climatic codes 3403, 5403, 5303, 4303, 5503, 5203, 3503, 3303, and 4103. China, the United States, Ukraine, Russia, and Iran are the top five countries with favorable lands for irrigated wheat cultivation. Similarly, fourteen countries have significant agricultural lands within the favorable climatic codes for rainfed wheat cultivation. Around 52% of the agricultural lands within these countries are within the climatic codes 3702, 2702, 2802, and 4602. France, Germany, Britain, Poland, and Denmark possess the highest potential to expand rainfed wheat cultivation areas within these favorable climate codes, with respective areas of 2.7, 2.6, 1.6, and 0.9 million hectares. According to the study, the North China Plain emerges as a primary region for increasing irrigated wheat production, both in terms of cultivated area and yield potential. For rainfed conditions, the European continent stands out as a significant region to enhance wheat production.


Subject(s)
Agriculture , Triticum , Humans , Temperature , Egypt , Food Insecurity
2.
Sci Rep ; 13(1): 14391, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658100

ABSTRACT

Breeding perennial tree crops often requires prediction of mature performance from juvenile data. To assess the utility of juvenile screens to predict salinity tolerance of mature pistachio trees, we compared performance of 3-month ungrafted seedlings and 4-year-old grafted rootstocks under salinity stress. The QTL allele associated with higher salt exclusion from seedling leaves conferred lower growth in saline field conditions, suggesting that mapping QTL in seedlings may be easier than discerning the optimal allele for field performance.


Subject(s)
Pistacia , Salt Tolerance , Trees , Alleles , Plant Breeding , Seedlings
3.
Plants (Basel) ; 10(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34834597

ABSTRACT

The production and consumption of nuts are increasing in the world due to strong economic returns and the nutritional value of their products. With the increasing role and importance given to nuts (i.e., walnuts, hazelnut, pistachio, pecan, almond) in a balanced and healthy diet and their benefits to human health, breeding of the nuts species has also been stepped up. Most recent fruit breeding programs have focused on scion genetic improvement. However, the use of locally adapted grafted rootstocks also enhanced the productivity and quality of tree fruit crops. Grafting is an ancient horticultural practice used in nut crops to manipulate scion phenotype and productivity and overcome biotic and abiotic stresses. There are complex rootstock breeding objectives and physiological and molecular aspects of rootstock-scion interactions in nut crops. In this review, we provide an overview of these, considering the mechanisms involved in nutrient and water uptake, regulation of phytohormones, and rootstock influences on the scion molecular processes, including long-distance gene silencing and trans-grafting. Understanding the mechanisms resulting from rootstock × scion × environmental interactions will contribute to developing new rootstocks with resilience in the face of climate change, but also of the multitude of diseases and pests.

4.
Plant Methods ; 15: 136, 2019.
Article in English | MEDLINE | ID: mdl-31832078

ABSTRACT

BACKGROUND: Predicting impact of plant tissue culture media components on explant proliferation is important especially in commercial scale for optimizing efficient culture media. Previous studies have focused on predicting the impact of media components on explant growth via conventional multi-layer perceptron neural networks (MLPNN) and Multiple Linear Regression (MLR) methods. So, there is an opportunity to find more efficient algorithms such as Radial Basis Function Neural Network (RBFNN) and Gene Expression Programming (GEP). Here, a novel algorithm, i.e. GEP which has not been previously applied in plant tissue culture researches was compared to RBFNN and MLR for the first time. Pear rootstocks (Pyrodwarf and OHF) were used as case studies on predicting the effect of minerals and some hormones in the culture medium on proliferation indices. RESULTS: Generally, RBFNN and GEP showed extremely higher performance accuracy than the MLR. Moreover, GEP models as the most accurate models were optimized using genetic algorithm (GA). The improvement was mainly due to the RBFNN and GEP strong estimation capability and their superior tolerance to experimental noises or improbability. CONCLUSIONS: GEP as the most robust and accurate prospecting procedure to achieve the highest proliferation quality and quantity has also the benefit of being easy to use.

5.
Foods ; 8(11)2019 Nov 09.
Article in English | MEDLINE | ID: mdl-31717485

ABSTRACT

The effects of passive- and active-modified atmosphere packaging (passive- and active-MAP) were investigated on the physio-chemical and quality attributes of fresh in-hull pistachios stored at 4 ± 1 °C and 90 ± 5% R.H. Fresh pistachios were packaged under each of the following gas combinations: active-MAP1 (AMA1) (5% O2 + 5% CO2), AMA2 (5% O2 + 25% CO2), AMA3 (5% O2 + 45% CO2), AMA4 (2.5% O2 + 5% CO2), AMA5 (2.5% O2 + 25% CO2), and AMA6 (2.5% O2 + 45% CO2), all balanced with N2, as well as passive-MAP (PMA) with ambient air (21% O2 + 0.03% CO2 + 78% N2). Changes in quality parameters were evaluated after 0, 15, 30 and 45 days of storage. Results demonstrated that AMA6 and PMA had significantly lower (7.96 Log CFU g-1) and higher (9.81 Log CFU g-1) aerobic mesophilic bacteria counts than the other treatments. However, the AMA6 treatment decreased, kernel chlorophyll and carotenoid content, hull antioxidant capacity, and anthocyanin content. The PMA treatment produced a significant weight loss, 0.18%, relative to the other treatments. The active-MAP treatments were more effective than the passive-MAP in decreasing weight loss, microbial counts, kernel total chlorophyll (Kernel TCL), and kernel carotenoid content (Kernel CAC). The postharvest quality of fresh in-hull pistachios was maintained best by the AMA3 (5% O2 + 45% CO2 + 50% N2) treatment.

6.
J Sci Food Agric ; 99(7): 3426-3433, 2019 May.
Article in English | MEDLINE | ID: mdl-30609047

ABSTRACT

BACKGROUND: The effects of passive modified-atmosphere packaging (passive-MAP) on the postharvest quality of de-hulled fresh pistachios (Pistacia vera L. cv. Kerman) stored at cold temperature (0 ± 0.5 °C) and 90 ± 1% relative humidity was investigated with fruits under ambient air condition as the control treatment. The fruit quality parameters measured included kernel firmness, color values (L* , a* , b* , h°, and C* ), weight loss, fungal decay and marketability, ethylene production, respiration rate, and sensory characteristics at 0, 30, 60, and 105 days of storage. The carbon dioxide (CO2 ) and oxygen (O2 ) concentrations in the package headspace were monitored during storage. RESULTS: A modified atmosphere of 0.95-3.35% O2 and 23.17-29.82% CO2 was achieved in the passive-MAP treatment. Fruit respiration rates increased significantly relative to controls throughout storage (P ≤ 0.01). However, storage had no significant effect on ethylene production rates. Additionally, passive-MAP-stored fruits maintained firmness, shell lightness, kernel color, and sensory quality with minimum weight loss and fungal decay, compared with the control. CONCLUSION: These results demonstrate storage life of fresh pistachios in passive-MAP can be extended up to 105 days, compared with 30 days in ambient conditions. © 2019 Society of Chemical Industry.


Subject(s)
Food Packaging/methods , Nuts/chemistry , Pistacia/chemistry , Carbon Dioxide/analysis , Ethylenes/analysis , Food Packaging/instrumentation , Food Storage , Fruit/chemistry , Oxygen/analysis , Quality Control , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...