Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 281: 119721, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34146555

ABSTRACT

PURPOSE: Pneumonitis and lung fibrosis, as the most common compliances of lung irradiation, can affect the quality of life. The use of radio-protective agents can ameliorate these injuries. This study aimed to review the potential protective role of melatonin in the treatment of radiation-induced Pneumonitis and lung fibrosis. METHODS: The current systematic study was conducted based on PRISMA guidelines to identify relevant literature on " the effect of melatonin on radiation-induced pneumonitis and lung fibrosis" in the electronic databases of Web of Science, Embase, PubMed, and Scopus up to January 2021. Eighty-one articles were screened in accordance with the inclusion and exclusion criteria of the study. Finally, eight articles were included in this systematic review. RESULTS: The finding showed that the lung irradiation-induced pneumonitis and lung fibrosis. The co-treatment with melatonin could alleviate these compliances through its anti-oxidant and anti-inflammatory actions. Melatonin through upregulation of some enzymes such as catalase, superoxide dismutase, glutathione, NADPH oxidases 2 and 4, dual oxidases 1 and 2, and also downregulation of malondialdehyde reduced oxidative stress following lung radiation. Moreover, melatonin through its anti-inflammatory effects, can attenuate the increased levels of nuclear factor kappa B, tumor necrosis factor alpha, transforming growth factor beta 1, SMAD2, interleukin (IL)-4, IL-4 receptor-a1 (IL4ra1), and IL-1 beta following lung radiation. The histological damages induced by ionizing radiation were also alleviated by co-treatment with melatonin. CONCLUSION: According to the obtained results, it was found that melatonin can have anti-pneumonitis and anti-fibrotic following lung irradiation.


Subject(s)
Lung Neoplasms/radiotherapy , Lung/radiation effects , Melatonin/pharmacology , Pneumonia/etiology , Pulmonary Fibrosis/etiology , Radiation Injuries/prevention & control , Radiation-Protective Agents/pharmacology , Animals , Humans , Pneumonia/prevention & control , Pulmonary Fibrosis/prevention & control
2.
Int Immunopharmacol ; 96: 107741, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33989970

ABSTRACT

PURPOSE: Radiation therapy is one of the main cancer treatment modalities applied in 50-70% of cancer patients. Despite the many advantages of this treatment, such as non-invasiveness, organ-preservation, and spatiotemporal flexibility in tumor targeting, it can lead to complications in irradiated healthy cells/tissues. In this regard, the use of radio-protective agents can alleviate radiation-induced complications. This study aimed to review the potential role of alpha-lipoic acid in the prevention/reduction of radiation-induced toxicities on healthy cells/tissues. METHODS: A systematic search was performed following PRISMA guidelines to identify relevant literature on the "role of alpha-lipoic acid in the treatment of radiotherapy-induced toxicity" in the electronic databases of Web of Science, Embase, PubMed, and Scopus up to January 2021. Based on the inclusion and exclusion criteria of the present study, 278 articles were screened. Finally, 29 articles were included in this systematic review. RESULTS: The obtained results showed that in experimental in vivo models, the radiation-treated groups had decreased survival rate and body weight compared to the control groups. It was also found that radiation can induce mild to severe toxicities on gastrointestinal, circulatory, reproductive, central nervous, respiratory, endocrine, exocrine systems, etc. However, the use of alpha-lipoic acid could alleviate the radiation-induced toxicities in most cases. This radio-protective agent exerts its effects through mechanisms of anti-oxidant, anti-apoptosis, anti-inflammatory, and so on. CONCLUSION: According to the obtained results, it can be mentioned that co-treatment of alpha-lipoic acid with radiotherapy ameliorates the radiation-induced toxicities in healthy cells/tissues.


Subject(s)
Antioxidants/pharmacology , Neoplasms/radiotherapy , Radiation Injuries/drug therapy , Radiation-Protective Agents/pharmacology , Radiotherapy/adverse effects , Thioctic Acid/pharmacology , Animals , Humans , Neoplasms/pathology , Radiation Injuries/prevention & control
3.
Comput Methods Programs Biomed ; 205: 106089, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33862569

ABSTRACT

PURPOSE: This study aimed to calculate and compare absorbed dose to bone following exposure to 192Ir and 60Co sources in high dose rate (HDR) skin brachytherapy. Moreover, effects of the bone thickness and soft tissue thickness before the bone on absorbed dose to the bone are evaluated . MATERIALS AND METHODS: 192Ir and 60Co sources inserted in Leipzig applicators with internal diameters of 1, 2 and 3 cm with/without their optimal flattening filters were simulated by MCNPX Monte Carlo code. Then, heterogeneous phantoms (including skin, soft tissue before and after the bone, cortical bone and bone marrow) were defined. Finally, relative depth dose values for the bone and other tissues in the heterogeneous phantoms were obtained and compared. RESULTS: The average relative depth dose values of the skin, soft tissue before and after bone and bone marrow were almost similar for both 192Ir and 60Co sources, with a maximum difference less than 2%. However, a 0.1-6.8% difference was observed between average relative depth dose values of these two sources for the cortical bone. The results showed that with increasing the bone thickness and bone distance from the skin surface, the average relative depth dose values of the bone marrow and cortical bone decreased for both 192Ir and 60Co sources inserted in the applicators without/with their optimal flattening filters. For most of evaluated the applicators without/with their flattening filters, the average relative depth dose values of the bone marrow arisen from the 60Co source were higher than those obtained from the 192Ir source, while an opposite trend was observed for the cortical bone . CONCLUSION: The obtained findings showed that the average relative depth dose values of 192Ir and 60Co sources at the corresponding depths of the designed heterogeneous phantoms were almost similar (expect for the cortical bone). Hence, it is concluded that 60Co source can be used instead of 192Ir source in HDR skin brachytherapy, particularly in developing countries.


Subject(s)
Brachytherapy , Skin Neoplasms , Bone and Bones , Humans , Iridium Radioisotopes/therapeutic use , Monte Carlo Method , Phantoms, Imaging , Radiometry , Radiotherapy Dosage
4.
J Appl Clin Med Phys ; 17(4): 430-441, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27455485

ABSTRACT

A new design of 125I (Model IR-Seed2) brachytherapy source has been manufactured recently at the Applied Radiation Research School, Nuclear Science and Technology Research Institute in Iran. The source consists of six resin beads (0.5 mm diameter) that are sealed in a cylindrical titanium capsule of 0.7 mm internal and 0.8 mm external diameters. This work aims to evaluate the dosimetric parameters of the newly designed 125I source using experimental measurements and Monte Carlo (MC) simulations. Dosimetric characteristics (dose rate constant, radial dose function, and 2D and 1D anisotropy functions) of the IR-Seed2 were determined using experimental measurements and MC simulations following the recommendations by the Task Group 43 (TG-43U1) report of the American Association of Physicists in Medicine (AAPM). MC simulations were performed using the MCNP5 code in water and Plexiglas, and experimental measurements were carried out using thermoluminescent dosimeters (TLD-GR207A) in Plexiglas phantoms. The measured dose to water in Plexiglas data were used for verification of the accuracy of the source and phantom geometry in the Monte Carlo simulations. The final MC simulated data to water in water were recommended for clinical applications. The MC calculated dose rate constant (Λ) of the IR-Seed2 125I seed in water was found to be 0.992 ± 0.025 cGy h-1U-1. Additionally, its radial dose function by line and point source approximations, gL(r) and gp(r), calculated for distances from 0.1 cm to 7 cm. The values of gL(r) at radial distances from 0.5 cm to 5 cm were measured in a Plexiglas phantom to be between 1.212 and 0.413. The calculated and measured of values for 2D anisotropy function, F(r, θ), were obtained for the radial distances ranging from 1.5 cm to 5 cm and angular range of 0°-90° in a Plexiglas phantom. Also, the 2D anisotropy function was calculated in water for the clinical application. The results of these investigations show that the uncertainty of the experimental data is within ± 7% between the measured and simulated data in Plexiglas. Based on these results, the MC-simulated dosimetric parameters of the new 125I source model in water are presented for its clinical applications in brachytherapy treatments.


Subject(s)
Brachytherapy/instrumentation , Brachytherapy/standards , Iodine Radioisotopes , Monte Carlo Method , Palladium , Phantoms, Imaging , Thermoluminescent Dosimetry/standards , Anisotropy , Humans , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...