Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 8(8): 835-840, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28835798

ABSTRACT

Adenosine A2A receptor (A2AAdoR) antagonism is a nondopaminergic approach to Parkinson's disease treatment that is under development. Earlier we had reported the therapeutic potential of 7-methoxy-4-morpholino-benzothiazole derivatives as A2AAdoR antagonists. We herein described a novel series of [1,2,4]triazolo[5,1-f]purin-2-one derivatives that displays functional antagonism of the A2A receptor with a high degree of selectivity over A1, A2B, and A3 receptors. Compounds from this new scaffold resulted in the discovery of highly potent, selective, stable, and moderate brain penetrating compound 33. Compound 33 endowed with satisfactory in vitro and in vivo pharmacokinetics properties. Compound 33 demonstrated robust oral efficacies in two commonly used models of Parkinson's disease (haloperidol-induced catalepsy and 6-OHDA lesioned rat models) and depression (TST and FST mice models).

2.
Bioorg Med Chem ; 25(6): 1963-1975, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28238512

ABSTRACT

Multipronged approach was used to synthesize a library of diverse C-8 cyclopentyl hypoxanthine analogs from a common intermediate III. Several potent and selective compounds were identified and evaluated for pharmacokinetic (PK) properties in Wistar rats. One of the compounds 14 with acceptable PK parameters was selected for testing in in vivo primary acute diuresis model. The compound demonstrated significant diuretic activity in this model.


Subject(s)
Adenosine A1 Receptor Antagonists/chemistry , Adenosine A1 Receptor Antagonists/pharmacology , Hypoxanthines/chemistry , Hypoxanthines/pharmacology , Adenosine A1 Receptor Antagonists/chemical synthesis , Adenosine A1 Receptor Antagonists/pharmacokinetics , Animals , Carbon-13 Magnetic Resonance Spectroscopy , Chromatography, Liquid , Drug Design , HEK293 Cells , Humans , Hypoxanthines/chemical synthesis , Hypoxanthines/pharmacokinetics , Male , Mass Spectrometry , Proton Magnetic Resonance Spectroscopy , Radioligand Assay , Rats , Rats, Wistar
3.
J Med Chem ; 60(2): 681-694, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28055204

ABSTRACT

Our initial structure-activity relationship studies on 7-methoxy-4-morpholino-benzothiazole derivatives featured by aryloxy-2-methylpropanamide moieties at the 2-position led to identification of compound 25 as a potent and selective A2A adenosine receptor (A2AAdoR) antagonist with reasonable ADME and pharmacokinetic properties. However, poor intrinsic solubility and low to moderate oral bioavailability made this series unsuitable for further development. Further optimization using structure-based drug design approach resulted in discovery of potent and selective adenosine A2A receptor antagonists bearing substituted 1-methylcyclohexyl-carboxamide groups at position 2 of the benzothiazole scaffold and endowed with better solubility and oral bioavailability. Compounds 41 and 49 demonstrated a number of positive attributes with respect to in vitro ADME properties. Both compounds displayed good pharmacokinetic properties with 63% and 61% oral bioavailability, respectively, in rat. Further, compound 49 displayed oral efficacy in 6-OHDA lesioned rat model of Parkinson diseases.


Subject(s)
Adenosine A2 Receptor Antagonists/pharmacology , Benzothiazoles/pharmacology , Cyclohexanols/pharmacology , Receptor, Adenosine A2A/metabolism , Adenosine A2 Receptor Antagonists/chemical synthesis , Adenosine A2 Receptor Antagonists/pharmacokinetics , Administration, Oral , Animals , Antiparkinson Agents/chemical synthesis , Antiparkinson Agents/pharmacokinetics , Antiparkinson Agents/pharmacology , Benzothiazoles/chemical synthesis , Benzothiazoles/pharmacokinetics , Cyclohexanols/chemical synthesis , Cyclohexanols/pharmacokinetics , Drug Design , HEK293 Cells , Humans , Levodopa/pharmacology , Male , Microsomes, Liver/metabolism , Molecular Docking Simulation , Rats, Wistar , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...