Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 27(10): 1993-1994, 2021 05.
Article in English | MEDLINE | ID: mdl-33609300
2.
Glob Chang Biol ; 27(8): 1501-1503, 2021 04.
Article in English | MEDLINE | ID: mdl-33494120
3.
Front Plant Sci ; 8: 786, 2017.
Article in English | MEDLINE | ID: mdl-28555150

ABSTRACT

Multi-scale models can facilitate whole plant simulations by linking gene networks, protein synthesis, metabolic pathways, physiology, and growth. Whole plant models can be further integrated with ecosystem, weather, and climate models to predict how various interactions respond to environmental perturbations. These models have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts. Outcomes will potentially accelerate improvement of crop yield, sustainability, and increase future food security. It is time for a paradigm shift in plant modeling, from largely isolated efforts to a connected community that takes advantage of advances in high performance computing and mechanistic understanding of plant processes. Tools for guiding future crop breeding and engineering, understanding the implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem responses to the environment are urgently needed. The purpose of this perspective is to introduce Crops in silico (cropsinsilico.org), an integrative and multi-scale modeling platform, as one solution that combines isolated modeling efforts toward the generation of virtual crops, which is open and accessible to the entire plant biology community. The major challenges involved both in the development and deployment of a shared, multi-scale modeling platform, which are summarized in this prospectus, were recently identified during the first Crops in silico Symposium and Workshop.

4.
New Phytol ; 213(1): 50-65, 2017 01.
Article in English | MEDLINE | ID: mdl-27778353

ABSTRACT

Contents 50 I. 50 II. 52 III. 54 IV. 55 V. 57 VI. 57 VII. 59 60 References 61 SUMMARY: As a consequence of an increase in world population, food demand is expected to grow by up to 110% in the next 30-35 yr. The population of sub-Saharan Africa is projected to increase by > 120%. In this region, cassava (Manihot esculenta) is the second most important source of calories and contributes c. 30% of the daily calorie requirements per person. Despite its importance, the average yield of cassava in Africa has not increased significantly since 1961. An evaluation of modern cultivars of cassava showed that the interception efficiency (ɛi ) of photosynthetically active radiation (PAR) and the efficiency of conversion of that intercepted PAR (ɛc ) are major opportunities for genetic improvement of the yield potential. This review examines what is known of the physiological processes underlying productivity in cassava and seeks to provide some strategies and directions toward yield improvement through genetic alterations to physiology to increase ɛi and ɛc . Possible physiological limitations, as well as environmental constraints, are discussed.


Subject(s)
Manihot/growth & development , Manihot/physiology , Photosynthesis , Environment , Manihot/genetics , Plant Leaves/physiology , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...