Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anticancer Agents Med Chem ; 20(9): 1087-1093, 2020.
Article in English | MEDLINE | ID: mdl-32268872

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is known as the malignant tumors in the bone. Cyanidin 3-OGlucoside (C3G) has a potential to induce the apoptotic cell death in different cancer cells; however, the mechanisms of action for C3G have not been clarified yet. OBJECTIVE: In this study, the apoptotic effects of C3G on three different osteosarcoma cell lines including Saso-2, MG-63, and G-292 (clone A141B1) were investigated. METHODOLOGY: The 24-hr IC50 of C3G for Saso-2, G-292, and MG-63 cells was evaluated by the MTT assay. Apoptosis induction in these cell lines after treatment with the C3G was approved by the Annexin V/PI flow cytometry. Changes at the mRNA expression level of PPARγ, P21, Bax, and Bcl-xl genes were investigated by real-time Polymerase Chain Reaction (PCR) technique, and P21 expression was further confirmed by the western blotting. RESULTS: The MTT assay results demonstrated that the 24-hr IC50 of C3G was equal to 110µg/ml for Saso-2 and G-292 cells while it was about 140µg/ml for the MG-63 cells. The results of real-time PCR clearly showed that treatment of the cells with 24hrs IC50 of C3G caused the upregulation of PPARγ, P21, and Bax genes. Moreover, western blot analysis confirmed that P21 protein overexpressed endogenously after treatment of the cells with the C3G, and it was more upregulated in the MG-63 cells compared to the other cell lines. CONCLUSION: According to the findings of the study, the C3G is a novel anti-osteosarcoma agent with the ability to induce the apoptosis in different osteosarcoma cells through upregulation of the PPARγ and P21 genes.


Subject(s)
Anthocyanins/pharmacology , Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Osteosarcoma/drug therapy , PPAR gamma/metabolism , Up-Regulation/drug effects , Anthocyanins/chemistry , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cyclin-Dependent Kinase Inhibitor p21/genetics , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Osteosarcoma/metabolism , Osteosarcoma/pathology , PPAR gamma/genetics , Structure-Activity Relationship , Tumor Cells, Cultured
2.
Galen Med J ; 9: e1896, 2020.
Article in English | MEDLINE | ID: mdl-34466606

ABSTRACT

BACKGROUND: Hepatocellular carcinoma is the most common type of liver cancer which arises from the main cells in the liver. We address many studies investigating anti-cancer role of hypericin, however the proposing corresponding molecular pathway seems to be still a debate. Therefore, the present study aimed to evaluate the apoptotic effect of hypericin on the Huh7 as the liver cancer cell line and its relation with the gate keeper gene P53. MATERIALS AND METHODS: In this study, the Huh7 cell line and fibroblast cells (as control group) were treated with different concentrations of hypericin for 24 and 48 hours. Detection of cell death was performed by MTT assay and flow cytometry. The expression of bax, bcl2 and p53 mRNAs was evaluated by Real-time PCR. Also, Immunocytochemistry (ICC) analysis was used for further evaluation of P53expression. RESULTS: The results showed that hypericin has a dose-dependent cytotoxic effect on the Huh7 cell line, with no or marginal effect on fibroblastic cells. According to flow cytometry results, about 53%cells underwent apoptosis after exposure to LD50 of hypericin for 24 hours. Real-time PCR data demonstrated that the pro-apoptotic genes Bax and P53 expression level increased. Expectedly ICC results confirmed the up-regulation of P53 proteins in treated samples. CONCLUSION: Our results indicate the cytotoxicity of hypericin on Huh7 cells by affecting the expression of the gate keeper gene P53; furthermore it is suggested that this herb can be utilized simultaneously with modalities targeting P53 up-regulation or related molecular pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...