Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 12(12)2020 Dec 19.
Article in English | MEDLINE | ID: mdl-33352658

ABSTRACT

Herein, we report PAN-g-Alg@Ag-based nanocatalysts synthesis via in situ oxidative free-radical polymerization of acrylonitrile (AN) using Alg@Ag nanoparticles (Alg@Ag NPs). Various analytical techniques, including FTIR, XRD, SEM, TEM, UV-Vis, and DSC, were employed to determine bonding interactions and chemical characteristics of the nanocatalyst. The optimized response surface methodology coupled central composite design (RSM-CCD) reaction conditions were a 35-min irradiation time in a 70-mg L-1 2,4-dinitrophenol (DNP) solution at pH of 4.68. Here, DNP degradation was 99.46% at a desirability of 1.00. The pseudo-first-order rate constant (K1) values were 0.047, 0.050, 0.054, 0.056, 0.059, and 0.064 min-1 with associated half-life (t1/2) values of 14.74, 13.86, 12.84, 12.38, 11.74, 10.82, and 10.04 min that corresponded to DNP concentrations of 10, 20, 30, 40, 50, 60, and 70 mg L-1, respectively, in the presence of PAN-g-Alg@Ag (0.03 g). The results indicate that the reaction followed the pseudo-first-order kinetic model with an R2 value of 0.99. The combined absorption properties of PAN and Alg@Ag NPs on copolymerization on the surface contributed more charge density to surface plasmon resonance (SPR) in a way to degrade more and more molecules of DNP together with preventing the recombination of electron and hole pairs within the photocatalytic process.

2.
ACS Omega ; 5(49): 32011-32022, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33344855

ABSTRACT

In the present study, ecofriendly green synthesized ZnO/CuO nanorods were prepared by using the stabilizing and reducing characteristics of the alginate biopolymer. The bionanocomposite (BNC) material was characterized by various sophisticated analytical tools such as Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy-energy dispersive X-ray spectroscopy, transmission electron microscopy, UV-visible spectroscopy, differential scanning calorimetry, and the Brunauer-Emmett-Teller (BET) method. The composition of ZnO/CuO@Alg BNC was found to be C (16.16 ± 0.42%), O (42.26 ± 1.87%), Cu (31.96 ± 1.05%), and Zn (9.62 ± 0.48%), which also supports the approximate 3:1 ratio of Cu2+ and Zn2+ taken as the precursor. The nanocrystalline spinel ferrite was found to have a BET specific surface area of 19.24 m2 g-1 with a total pore volume of 0.075 cm3 g-1 and 1.45 eV as the band gap energy (E g). Further, the material was applied for the photodegradation of p-nitrophenol (PNP) under the advanced oxidative process (AOP) under visible sunlight irradiation. The visible light radiation was used for the degradation of PNP under pH 2 conditions and resulted in 98.38% of the photocatalytic efficiency of the ZnO/CuO@Alg catalyst within 137 min of irradiation time. The photocatalytic reaction was best defined by the pseudo-first-order kinetics which involves the adsorption of the PNP molecule on the surface of the catalyst, thereby demineralizing it in the presence of advanced active •OH radicals. The values of rate constant for the pseudo-first-order model (k 1) were calculated as 0.013, 0.016, 0.019, 0.021, and 0.023 min-1 with half-life periods of 53.31, 43.31, 36.47, 33.00, and 30.13 min for 10-50 mg L-1 PNP concentrations. The presence of t-butyl alcohol decreases the photocatalytic efficiency, which suggests that the degradation of PNP was accomplished by the •OH oxidative radical.

SELECTION OF CITATIONS
SEARCH DETAIL
...